Acknowledgement

I would like to express my very great appreciation to the following people. This dissertation would not have been possible without the support of them. Many thanks to my adviser Professor Ningfang Mi for the continuous guidance of my PhD, for her patience, motivation, and immense knowledge. The work in this dissertation is the result of collaboration with many other people. I wish to acknowledge the help provided by Professor Bo Sheng, Jiayin Wang, Jianzhe Tai, Jason Lin, and Chiu Tan. I would like to offer my special thanks to my thesis committee members, Professor Mirek Riedewald, Doctor Xiaoyun Zhu, and Professor Yunsi Fei. Thank you very much for your helpful feedback. I thank my fellow labmates for the discussions, working together, and for all the fun we have had in the last five years. Last but not least, I am particularly grateful for the unwavering support from my family and friends through my PhD.
To my family
Contents

Abstract vi

1 Introduction 1
 1.1 Features of Cluster Computing Platforms and Applications 3
 1.2 Summary of Contributions 6
 1.3 Dissertation Outline 7

2 Background 9
 2.1 MapReduce Programming Paradigm 9
 2.2 Hadoop MapReduce 10
 2.3 Hadoop YARN 11
 2.4 Scheduling Policies 12

3 Resource Management for Hadoop MapReduce 14
 3.1 A Job Size-Based Scheduler for Hadoop MapReduce 15
 3.1.1 Motivation 15
 3.1.2 Algorithm Description 19
 3.1.3 Model Description 26
 3.1.4 Evaluation 27
 3.2 Self-Adjusting Slot Configurations for Hadoop MapReduce 40
 3.2.1 Motivation 41
 3.2.2 System Model and Static Slot Configuration 44
 3.2.3 Dynamic Slot Configuration Under Homogeneous Environments 46
 3.2.4 Dynamic Slot Configuration Under Heterogeneous Environments 52
Abstract

In the era of big data, one of the most significant research areas is cluster computing for large-scale data processing. Many cluster computing frameworks and cluster resource management schemes were recently developed to satisfy the increasing demands on large volume data processing. Among them, Apache Hadoop became the de facto platform that has been widely adopted in both industry and academia due to its prominent features such as scalability, simplicity and fault tolerance. The original Hadoop platform was designed to closely resemble the MapReduce framework, which is a programming paradigm for cluster computing proposed by Google. Recently, the Hadoop platform has evolved into its second generation, Hadoop YARN, which serves as a unified cluster resource management layer to support multiplexing of different cluster computing frameworks. A fundamental issue in this field is that given limited computing resources in a cluster, how to efficiently manage and schedule the execution of a large number of data processing jobs. Therefore, in this dissertation, we mainly focus on improving system efficiency and performance for cluster computing platforms, i.e., Hadoop MapReduce and Hadoop YARN, by designing the following new scheduling algorithms and resource management schemes.

First, we developed a Hadoop scheduler (LsPS), which aims to improve average job response times by leveraging job size patterns of different users to tune resource sharing between users as well as choose a good scheduling policy for each user. We further presented a self-adjusting slot configuration scheme, named TuMM, for Hadoop MapReduce to improve the makespan of batch jobs. TuMM abandons the static and manual slot configurations in the existing Hadoop MapReduce framework. Instead, by using a feedback control mechanism, TuMM dynamically tunes map and reduce slot numbers on each cluster node based on monitored workload information to align the execution of map and reduce phases. The second main contribution of this dissertation lies in the development of new scheduler and resource management scheme for the next generation Hadoop, i.e., Hadoop YARN. We designed a YARN scheduler, named HaSTE, which can effectively reduce the makespan of MapReduce jobs in YARN platform by leveraging the information of requested resources, resource capacities, and dependency between tasks. Moreover, we proposed an opportunis-
tic scheduling scheme to reassign reserved but idle resources to other waiting tasks. The major goal of our new scheme is to improve system resource utilization without incurring severe resource contentions due to resource over provisioning.

We implemented all of our resource management schemes in Hadoop MapReduce and Hadoop YARN, and evaluated the effectiveness of these new schedulers and schemes on different cluster systems, including our local clusters and large clusters in cloud computing, such as Amazon EC2. Representative benchmarks are used for sensitivity analysis and performance evaluations. Experimental results demonstrate that our new Hadoop/YARN schedulers and resource management schemes can successfully improve the performance in terms of job response times, job makespan, and system utilization in both Hadoop MapReduce and Hadoop YARN platforms.
Chapter 1

Introduction

The past decade has seen the rapid development of cluster computing platforms, as growing data volumes require more and more scalable applications. In the age of big data, the data that needs to be processed by many companies and research projects is difficult to fit into traditional database and software techniques due to its increasing volume, velocity, and variety. For example, Google reported to process more than 20 PB of data per day in 2008 [1], and Facebook reported that they process between 10-15 TB of compressed data every day in 2010 [2]. This amount of data definitely cannot be handled by a single computer. It is also not cost efficient and scalable to process such big data with a single high performance super computer. Therefore, many paradigms are designed for efficiently processing big data in parallel with commercial computer clusters. Among them, MapReduce [1] and its open source implementation Apache Hadoop [3] have emerged as the de facto platform for processing large-scale semi-structured and unstructured data. Hadoop MapReduce has been widely adopted by many companies and institutions [4] mainly due to the following advantages. First, Hadoop is easy for both administrators and developers to deploy and develop new applications. Moreover, it is scalable. A Hadoop cluster could be easily scaled from a few nodes to thousands of nodes. Last but not least, a Hadoop MapReduce cluster is fault tolerant to node failures, which greatly improves the availability of Hadoop platforms.

As the demand on large-scale data processing grows, new platforms such as Spark [5], Storm [6], and cluster resource management solutions such as YARN [7],
Mesos \cite{8} are recently developed to form a thriving ecosystem. An example of the typical deployment of cluster computing platforms for large-scale data processing is shown in Figure 1.1. Geographically distributed private data centers and public clouds are virtualized to form a virtual cluster. A distributed file system, e.g., HDFS, is deployed upon the virtual cluster to support multiple data processing platforms. Data ingress and egress system transfers input data into the distributed file system from different sources and feed the output data to different services after processing. Different general large-scale data processing platforms such as Hadoop MapReduce, Spark, and high level platforms that built upon them such as Hive \cite{9}, Pig \cite{10}, Shark \cite{11}, and GraphX \cite{12} are co-deployed on the virtual cluster. Resource sharing among those platforms is managed by the unified resource management scheme such as Hadoop YARN or Mesos. As these platforms usually deliver key functionalities and play important roles in both business and research areas, the efficiency of these platforms is of great importance to both customers and service providers. To achieve better efficiency in cluster computing frameworks, we take efforts to improve the scheduling of different data processing platforms based on their job properties and design effective resource management schemes.

Figure 1.1: Typical deployment of large-scale data processing systems.
1.1 Features of Cluster Computing Platforms and Applications

In this section, we discuss some prominent features of current cluster computing frameworks for large-scale data processing and cluster computing applications. Our work is motivated by these features.

(1) Diversity of workloads. Many cluster computing platforms, such as Hadoop, were designed for optimizing a single large job or a batch of large jobs. However, actual workloads are usually much more complex in real world deployed platforms. The complexity is reflected in three aspects. First, a large-scale data processing cluster, once established, is no longer dedicated to a particular job, but to multiple jobs from different applications or users. For example, Facebook [2] allows multiple applications and users to submit their ad hoc queries to the shared Hive-Hadoop clusters. Second, data processing service is becoming prevalent and open to numerous clients from the Internet, like today’s search engines service. For example, a smartphone user may send a job to a MapReduce cluster through an App asking for the most popular words in the tweets logged in the past three days. Third, the characteristics of data processing jobs vary a lot. It is essentially caused by the diversity of user demands. Recent analysis on MapReduce workloads of current enterprise clients [13], e.g., Facebook and Yahoo!, has revealed the diversity of MapReduce job sizes which range from seconds to hours. Overall, workload diversity is common in practice when jobs are submitted by different users. For example, some users run small interactive jobs while other users submit large periodical jobs; on the other hand, some users run jobs for processing files with similar sizes while jobs from other users have quite different sizes.

(2) Various performance considerations. As discussed before, cluster computing platforms serve diverse workloads of different properties and from different sources. These workloads usually have different primary performance considerations. For example, interactive ad hoc applications requiring good response times while makespan or deadlines are more important for periodical batch jobs. There is no single resource management scheme or application scheduler that is optimal for all performance metrics. The original FIFO scheduling policy of Hadoop MapReduce is designed for better batch execution. However, the response time of short jobs are sacrificed when they
are submitted behind applications with long running times. Schedulers like Fair and Capacity are designed for resource sharing between users and applications which support fairness and provide better performance for short applications. However, they are not optimal in terms of job response times or throughput.

(3) Dependency between tasks. While breaking down large jobs into small tasks for parallel execution, dependencies usually exist between tasks in most cluster computing applications. In Hadoop MapReduce platform, reduce tasks depend on map tasks from the same job since executions of reduce tasks rely on the intermediate data produced by map tasks. The data transferring process in MapReduce is named shuffle. In the traditional definition of task dependency, when a task depends on others, its starting time cannot be earlier than any of the completion time of its dependent tasks. However, in Hadoop MapReduce platform, reduce tasks actually start earlier, i.e., before the finish time of all map tasks. The reason is that shuffle process is bundled with reduce tasks in the Hadoop framework, such that starting reduce tasks earlier can help improve performance by overlapping the shuffle progress with the map progress, i.e., keep fetching the intermediate data produced by finished map tasks while other map tasks are still running or waiting. In other frameworks, there may be even more complex dependencies between tasks in each job. For example, in Spark systems, a job may consist of a complex DAG (directed acyclic graph) of dependent stages rather than two stages in the MapReduce framework.

(4) Different resource requirements of tasks. Different types of tasks of cluster computing applications usually have totally different resource requirements. As an example, in MapReduce framework, each application has two main stages, i.e., map and reduce, and there can be multiple independent tasks performing the same functionalities in each stage, i.e., map tasks and reduce tasks. These two types of tasks usually have quite different resource requirements. Map tasks are usually cpu intensive while reduce tasks are I/O intensive especially when fetching intermediate data from mappers. Therefore, system resources can be better utilized if map and reduce tasks run concurrently on worker nodes. To ensure better resource utilization, the first generation Hadoop differentiates task assignments for map/reduce tasks by configuring different map/reduce slots on each node. The slot concept is an abstraction of node capacity where each map/reduce slot accommodates at most one map/reduce
task at any given time. By setting the number of map/reduce slots on each node, the Hadoop platform therefore controls the concurrency of different types of tasks in the cluster to achieve better performance. The second generation Hadoop YARN system adopts fine grained resource management where each task needs to explicitly specify its demands on different types of resources, i.e., cpu and memory. The resource manager therefore takes advantage of heterogeneous resource demands and utilizes the cluster’s resources more precisely and efficiently.

(5) Cluster resource utilization. Many current resource management schemes cannot fully utilize cluster resources. For example, a production cluster at Twitter managed by Mesos reported aggregate cpu utilization lower than 20% [14], and Google’s Borg system reported aggregate cpu utilization of 25-35% [15]. One main reason is that current resource management schemes always reserve a fixed amount of resources to each task according to its resource request. Yet, we observe that tasks from various data processing frameworks and applications can have different resource usage patterns. For example, many tasks of cluster computing applications consist of multiple internal phases and have relatively long execution times. These tasks usually have varying resource requirements during their executions. As discussed above, reduce tasks in the MapReduce framework usually have lower cpu utilization in their shuffle stage, i.e., fetching intermediate data, when they are waiting for map tasks to generate outputs. Another example is Spark tasks. When deployed on a YARN system, a Spark task works as an executor to host multiple user-defined stages which also require different types and amounts of resources. Further more, when Spark tasks serve an interactive job, resource usage of these tasks can change frequently, e.g., being totally idle during a user’s thinking time, and becoming busy and requesting more resources when a user command arrives. Similarly, the frameworks that process streaming data may keep a large number of tasks being alive and waiting for streaming inputs to process. Resource requirements thus have to change over time upon the arriving of incoming new data which is unfortunately non-predictable. Although short tasks dominates in many cluster computing clusters, the impacts of long-lifetime tasks on system resource usages are non-negligible because of their high resource demands and long resource occupation. In these cases, fixing the assignment of resources during a task’s lifetime becomes ineffective to fully utilize system resources.
In summary, these features provide both challenges and opportunities for performance management in cluster computing frameworks for large-scale data processing. Therefore, in this dissertation, we strive to design new scheduling and resource management schemes to improve performance (e.g., makespan of batch MapReduce jobs) and system resource (e.g., CPU and memory) utilization, when different data processing frameworks are deployed in large scale cluster computing platforms.

1.2 Summary of Contributions

The dissertation contributes the following components for cluster computing platforms.

- We developed a scheduler for Hadoop MapReduce to improve average job response time in multi-user clusters \[16,17\]. The new scheduler, named LsPS, estimates size patterns of running jobs by on-line task length prediction. It then leverages the job size patterns of different users to tune the slot sharing among users and scheduling schemes for each user to achieve a better schedule efficiency. Experimental results in both simulation model and Amazon EC2 cloud environment validate the effectiveness of LsPS, which can improve the average job response time by up to 60% compared with Fair policy under mixed workloads.

- We designed a slot management mechanism to reduce the makespan of a batch of jobs in Hadoop MapReduce platform \[18,19\]. The original Hadoop cluster adopts fixed slot configurations for each node, which results in low utilization and non-optimal makespan. Our self-adjusting slot management scheme TuMM can automatically tune slot configuration on each cluster node to align map phase and reduce phase of consequently running MapReduce jobs based on feedback control. We evaluated TuMM with representative MapReduce benchmarks on both homogeneous and heterogeneous Hadoop clusters. Results prove that tasks from different phases are optimally aligned and the makespan of a batch of jobs are therefore significantly improved.
• We devised a scheduling policy that improves makespan of a batch of MapReduce jobs in Hadoop YARN platform. Heuristic scores were designed to represent task priorities according to multi-dimensional resource requirements of tasks and execution dependencies between tasks. The new scheduler HaSTE can then assign MapReduce tasks more efficiently according to their priorities to achieve better job makespan. We implemented HaSTE based on Hadoop YARN v2.2 and evaluated it in our local cluster. Experimental results show over 30% of reductions in makespan of a batch of MapReduce jobs compared with existing schedulers in YARN platform.

• We proposed a resource management scheme that improves resource utilization of YARN clusters when hosting multiple cluster computing frameworks. The new resource management scheme for YARN cluster opportunistically assigns tasks according to monitored actual resource usages on working nodes to improve cluster resource utilization. To minimize the side effect of resource contention caused by resource over provisioning, we restricted that only tasks with short life time are eligible for using idle but reserved resources. Different contention relief policies are further implemented and evaluated. Experimental results confirm that system utilization of YARN platform is greatly improved with opportunistically scheduling while the performance degradation caused by resource contention is almost negligible.

Overall, this dissertation investigates the properties of two popular cluster computing platforms, Hadoop MapReduce and Hadoop YARN, and focuses on developing new scheduling algorithms and resource management schemes to improve system efficiency.

1.3 Dissertation Outline

The dissertation is organized as follows. Chapter 2 provides an overview of the MapReduce programming paradigm, two popular cluster computing platforms, Hadoop MapReduce and Hadoop YARN, and the default scheduling policies in Hadoop platforms. We present our new job size based scheduler, LsPS, for Hadoop MapReduce, in Chapter 3. TuMM, a self-adjusting slot configuration scheme for Hadoop is proposed
in this Chapter. Chapter 4 presents the new Hadoop YARN scheduler and resource management scheme to improve efficiency of a Hadoop YARN cluster. Finally, we summarize our work and conclude the thesis in Chapter 5.
Chapter 2

Background

2.1 MapReduce Programming Paradigm

Figure 2.1 depicts the MapReduce parallel data processing scheme. There are two major phases in a typical MapReduce job, i.e., map phase and reduce phase. In the map phase, each mapper task processes one split/block of the input data (data is usually chunked into small blocks and stored in a distributed file system, such as HDFS and S3), and produces intermediate data in the format of key/value pairs. Each intermediate data record is then sent to reduce task based on the value of its key. All data records with the same key are sent to the same reduce task. Therefore, each reduce task receives an exclusive sub set of the total intermediate data. The data transmitting process is called shuffle. A reduce task starts processing intermediate data and producing final results after receiving all associated key/value pairs through shuffle process. Within each phase, there are multiple distributed tasks, either map-

![Figure 2.1: Illustration of MapReduce data processing scheme.](image-url)
pers or reducers, running the same function independently to process their input data
sets. Therefore, data processing in each stage can be performed in parallel in a cluster
for performance improvement. If some tasks of a job fail or straggle, then only these
tasks, instead of the entire job, will be re-executed. In the MapReduce framework,
programmers only need to design appropriate map and reduce functions for their ap-
lications, without taking care of data flow, data distribution, failure recovery, and
other implementation details.

2.2 Hadoop MapReduce

The Apache Hadoop MapReduce implementation closely resembles the MapReduce
paradigm. The structure of Hadoop platform is shown in Figure 2.2. It consists of
two main components: Hadoop Distributed File System (HDFS), and MapReduce
framework. All the input and output data files are stored in HDFS, which automati-
cally chops each file into uniform sized splits, and evenly distributes all splits across
its distributed storages devices (i.e., local storages of cluster nodes). Each split of
data also has multiple redundant copies for fault tolerance and data locality. A cen-
tralized NameNode is in charge of managing the HDFS, and distributed DataNodes
are running on cluster nodes to manage the stored data.

![Figure 2.2: Illustration of Apache Hadoop platform structure.](image)

In a Hadoop MapReduce framework, all incoming MapReduce jobs are scheduled
and managed in a centralized master node that runs a JobTracker routine. The
map/reduce tasks of each job are executed on distributed slave nodes which run
TaskTracker routines. Resources on slave nodes are represented by the “slot” concept,
where each slot represents a coarse-grained bundle of physical resources that can host one running task. Hadoop MapReduce further differentiates map and reduce slots, such that map (resp. reduce) tasks can only run on map (resp. reduce) slots. TaskTrackers report their status, including slot usage and task progress information, to the JobTracker periodically through heartbeat messages. When detecting spare map/reduce slots from a heartbeat message, the JobTracker assigns tasks of waiting jobs for processing on these empty slots. If there are multiple waiting jobs competing for resources (i.e., empty slots), an appropriate job is then chosen based on a specified scheduling algorithm.

Since data splits are stored in local disks of each worker node, data locality is considered when selecting map tasks for executing. Tasks with input data stored locally have higher priority to be chosen to decrease the amount of data transmission and therefore to improve system efficiency. Another important feature of Hadoop is that the shuffle processes of MapReduce jobs are associated with reduce tasks. Consequently, each reduce task can start early and pull its input data from finished map tasks. It follows that, for each MapReduce job, the shuffle stage of its reduce tasks can overlap with its map phase to improve system efficiency.

2.3 Hadoop YARN

A YARN system provides a unified resource management framework for different data processing platforms. Similar to the original Hadoop framework, the YARN framework also has a centralized manager node running the ResourceManager (RM) daemon and multiple distributed working nodes running the NodeManager (NM) daemons. However, there are two major differences between the design of YARN and original Hadoop. First, the ResourceManager in YARN no longer monitors and coordinates job execution as the JobTracker of traditional Hadoop does. An ApplicationMaster (AM) is generated for each application in YARN which generates resource requests, negotiates resources from the scheduler of ResourceManager and works with the NodeManagers to execute and monitor the corresponding application’s tasks. Therefore, the ResourceManager in YARN is more scalable than the JobTracker in traditional Hadoop framework. Secondly, YARN abandons the pre-
vious coarse-grained slot configuration used by TaskTrackers in traditional Hadoop. Instead, NodeManagers in YARN consider the fine-grained resource management for managing various resources (e.g., CPU and memory) in the cluster. Therefore, in a YARN system, users need to specify resource demands for each task of their jobs. A resource request of a task is a tuple $< p, \vec{r}, m, l, \gamma >$, where p represents task priority, \vec{r} gives a vector of task resource requirements, m shows the number of tasks in the application which have the same resource requirements of \vec{r}, l indicates the location of a task’s input data split, and γ is a boolean value to indicate whether a task can be assigned to a NodeManager that does not locally have that task’s input data split. ResourceManager also receives heartbeat messages from all active NodeManagers which report their current resource usages, and then schedules tasks to NodeManagers which have sufficient residual resources.

Different data processing paradigms can run on top of YARN as long as appropriate Application Master implementations are provided. For example, a MapReduce job’s ApplicationMaster needs to negotiate resources for its map and reduce tasks, and coordinate the execution of map and reduce tasks, i.e., delay the start time of reduce tasks. On the other hand, a Spark job’s ApplicationMaster needs to negotiate resources for its executors and schedule tasks to run in the launched executors.

2.4 Scheduling Policies

Scheduling policies play an important role in large-scale data processing platforms which are shared by multiple users and thus have the issue of resource contentions. Classic scheduling policies that are widely adopted include FIFO, Fair, and Capacity.

- The FIFO policy sorts all waiting applications in a non-decreasing order of their submission times. The first queuing job’s request is always scheduled for service when there are spare resources, e.g., available slots in Hadoop MapReduce or cpu/memory capacity in Hadoop YARN.

- The Fair policy assigns resources to applications such that all applications get, on average, an equal share of resources over time. Job queues with different shares and weights may be configured to support proportional resource sharing.
for applications in different queues. A variant of Fair, named Dominant Resource Fairness (DRF) [21], is also widely adopted when tasks require multiple resource types, e.g., cpu and memory. DRF assigns resources to applications such that all applications get, on average, an equal share of their dominant resources over time.

- The Capacity policy works similar to the Fair policy. Under Capacity, the scheduler attempts to reserve a guaranteed resource capacity for each job queue. Additionally, the under-utilized capacities of idle queues can be shared by other busy queues.

When scheduling tasks for each job/application, all these scheduling policies mainly consider data locality. Tasks with input data stored locally have higher priority to be scheduled, such that the framework can bring computation to the data which is more efficient than the opposite way.
Chapter 3

Resource Management for Hadoop MapReduce

Hadoop MapReduce has been widely adopted as the prime framework for large-scale data processing jobs in recent years. Although initially designed for batch job processing, Hadoop MapReduce platforms usually serve much more complex workloads that comes from multiple tenants in real world deployments. For example, Facebook [2], one of Hadoop’s biggest champions, keeps more than 100 petabytes of Hadoop data on-line, and allows multiple applications and users to submit their ad-hoc queries to the shared Hive-Hadoop clusters. For those ad-hoc jobs, the average job response time becomes a prime performance consideration in the shared Hadoop MapReduce cluster. At the same time, the Hadoop cluster in Facebook also serves periodical batch jobs where the total completion length of jobs is of greater importance. In this section, we propose two different schemes for Hadoop MapReduce platform that aim to improve the system performance under different primary performance considerations.
3.1 A Job Size-Based Scheduler for Hadoop MapReduce

Scheduling policy plays an important role for improving job response times in Hadoop when multiple users compete for available resources in cluster. However, we found that the existing policies supported by Hadoop MapReduce platform do not perform well in terms of job response times under heavy and diverse workloads. The default FIFO policy, which is originally designed for better total job completion length (i.e., makespan) for batch jobs, performs poorly in terms of average job response time. Since short jobs may stick behind long jobs and have extremely long waiting time. Fair and Capacity policies mitigate the problem of FIFO by sharing total system resources among jobs from different queues. Such that short jobs can process immediately after submission without waiting for long jobs if they are assigned to a different queue from the long jobs. However, we found that Fair policy could also perform poorly in terms of average job response times under certain workload patterns.

In this work, we introduce a scheduler, called LsPS [16, 17], which aims to improve the average job response time of Hadoop MapReduce systems by leveraging the present job size patterns to tune its scheduling schemes among users and for each user as well. Specifically, we first develop a lightweight information collector that tracks the important statistic information of recently finished jobs from each user. A self-tuning scheduling policy is then designed to scheduler Hadoop jobs at two levels: the resource shares across multiple users are tuned based on the estimated job size of each user; and the job scheduling for each individual user is further adjusted to accommodate to that user’s job size distribution. Experimental results in both the simulation model and the Amazon EC2 Hadoop cluster environment confirm the effectiveness and robustness of our solution. We show that our scheduler improves the average job response times under a variety of system workloads.

3.1.1 Motivation

In order to investigate the pros and cons of the existing Hadoop schedulers (i.e., FIFO and Fair), we conduct several experiments in a Hadoop MapReduce cluster at
Amazon EC2. In particular, we lease 11 EC2 nodes to deploy the Hadoop platform, where one node serves as the master and the remaining ten nodes run as the slaves. In this Hadoop cluster, each slave node contains 2 map slots and 2 reduce slots. We run WordCount applications to compute the occurrence frequency of each word in input files with different sizes. RandomTextWriter is used to generate random files as the inputs of WordCount application in the experiments.

3.1.1.1 How to Share Slots

Specifically, there are two tiers of scheduling in a Hadoop system which is shared by multiple users: (1) Tier 1 is responsible for assigning free slots to active users; and (2) Tier 2 schedules jobs for each individual user. In this subsection, we first investigate different Hadoop scheduling policies at Tier 1. When no minimum share of each user is specified, Fair scheduler fairly allocates available slots among users such that all users get an equal share of slots over time. However, we argue that Fair unfortunately is inefficient in terms of job response times.

For example, we perform an experiment with two users such that user 1 submits 30 WordCount jobs to scan a random generated input file with size of 180 MB, while user 2 submits 6 WordCount jobs at the same time to scan a random generated 1.6 GB input file. All the jobs will be submitted at roughly the same time. We set the block size of HDFS to be equal to 30 MB. Thus, the map task number of each job from user 2 is equal to 54 (1.6GB/30MB), while each job from user 1 only has 6 (180MB/30MB) map tasks. We also set the reduce task number of each job equal to its map task number. As the average task execution times of jobs from two users are similar, we say that the average job size (i.e., average task number times average task execution time) of user 2 is about 9 times larger than that of user 1.

In the context of single-user job queues, it is well known that giving preferential treatment to shorter jobs can reduce the overall expected response time of the system, such that the shortest remaining job first (SRJF) scheduling policy generates the optimal queuing time. However, directly using SRJF policy has several drawbacks. First, the large jobs could be starved in SRJF, and SRJF lacks flexibility when certain level of fairness or priority between users is required, which is common in practice. Moreover, precise job size prediction before execution is also required.
for using SRJF which is not easy to achieve in real systems. In contrast, the sharing based scheduling could easily solve the starve problem and provides flexibility to integrate fairness between users by setting up minimal shares for each user. Allowing all users to run their application concurrently also helps to improve the job size prediction accuracy in Hadoop system by getting information from finished tasks. Motivated by this observation and the analysis of discriminatory processor sharing between multiple users in [23], we evaluate the discriminatory share policies in Hadoop platform. It is extremely hard and complex to find out an optimal share policy under a dynamic environment, where user workload patterns may change frequently across time. Therefore, we opted to heuristically assign slots that are reversely proportional to the average job sizes of users, and dynamically tune the share over time according to the workload pattern changes. We compare Fair policy and two variants, i.e., share slots proportional to the average job sizes of users (Fair_V1), and reversely proportional sharing policy (Fair_V2), under the two user scenario.

Table 3.1 shows the average response times of jobs from user 1, user 2, and both users under Fair and the two variants, i.e., Fair_V1 and Fair_V2. We observe that Fair_V2 achieves a non-negligible improvement by assigning more slots to user 1 who has small jobs. We therefore conclude that when the job sizes of various users are not uniform, a good Hadoop scheduler should adjust the slot shares among multiple users based on their average job sizes, aiming to improve the overall performance in terms of job response times.

Table 3.1: Average job response times for two users with different job sizes under Fair and two variants.

<table>
<thead>
<tr>
<th>ShareRatio</th>
<th>User 1</th>
<th>User 2</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
<td>1 : 1</td>
<td>548.06 sec</td>
<td>1189.33 sec</td>
</tr>
<tr>
<td>Fair_V1</td>
<td>1 : 9</td>
<td>1132.33 sec</td>
<td>983.16 sec</td>
</tr>
<tr>
<td>Fair_V2</td>
<td>9 : 1</td>
<td>375.56 sec</td>
<td>1280.66 sec</td>
</tr>
</tbody>
</table>

3.1.1.2 How to Schedule

Now, we look closely at the two Hadoop scheduling policies at Tier 2, i.e., allocating slots to jobs from the same user. As shown in [24], job execution times might vary from seconds to hours in enterprise Hadoop workloads. The average job response
times under FIFO scheduling policy thus becomes quite unacceptable because small jobs are often stuck behind large ones and thus experiencing long waiting times. On the other hand, Fair scheduler solves this problem by equally assigning slots to all jobs no matter what sizes those jobs have and thus avoiding the long wait behind large jobs. However, the average job response time of Fair scheduler depends on the job size distribution, similar as PS policy [25]: when job sizes have high variances, i.e., coefficient of variation\(^1\) of job sizes \(CV > 1\), Fair achieves better performance (i.e., shorter average job response time) than FIFO; but this performance benefit disappears when the job sizes become close to each other, with \(CV \leq 1\).

To verify this observation, we conduct experiments in our Hadoop cluster by running WordCount applications under three different job size distributions: (1) all input files have the same size with \(CV = 0\); (2) input file sizes are exponentially distributed with \(CV = 1\); and (3) input file sizes are highly variable with \(CV = 1.8\).

As shown in Table 3.2 when input file sizes are exponentially distributed, both FIFO and Fair obtain similar average job response times; while Fair significantly reduce the average job response times under the case of high variance but loses its superior when all files have similar sizes.

Table 3.2: Average job response times under FIFO and Fair when job sizes have three different distributions.

<table>
<thead>
<tr>
<th></th>
<th>(CV = 0)</th>
<th>(CV = 1)</th>
<th>(CV = 1.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO</td>
<td>239.10 sec</td>
<td>208.78 sec</td>
<td>234.95 sec</td>
</tr>
<tr>
<td>Fair</td>
<td>346.45 sec</td>
<td>220.11 sec</td>
<td>128.35 sec</td>
</tr>
</tbody>
</table>

The response times of each job in the three experiments with different job size distributions are also plotted in Figure 3.1. We observe that when the job sizes are similar, most of jobs experience shorter response times under FIFO than under Fair, see Figure 3.1(a). However, as the variation of job sizes increases, i.e., \(CV > 1\), the percentage of jobs which are finished more quickly under Fair increases as well, which thus allows Fair to achieve better average job response times than FIFO. These results further confirm that the relative performance between the above two scheduling policies depends on the job size distribution. Clearly, the response time of each

\(^1\)The coefficient of variation (CV) is defined as the ratio of the standard deviation \(\sigma\) to the mean \(\mu\).
individual job is mainly related to that particular job’s size (determined by input file size in this case) under Fair scheduling policy. On the other hand, under the FIFO policy, each job’s response time may be affected by other jobs which were submitted earlier. FIFO allows most of the jobs to experience faster response times when the job sizes are similar; while most jobs are finished faster under Fair when jobs have variable sizes. The \(CV \) value of job sizes could then be a great threshold to determine which policy can achieve shorter job response times under a certain workload. We thus argue that a good Hadoop scheduler should dynamically adjust the scheduling algorithms at Tier 2 according to the distribution of the job sizes.

![Graph showing response times](image)

(a) Low Variability: \(CV = 0 \)
(b) Medium Variability: \(CV = 1 \)
(c) High Variability: \(CV = 1.8 \)

Figure 3.1: Response times of each WordCount job under FIFO and Fair when the input file sizes have different \(CV \).

3.1.2 Algorithm Description

Considering the dependency between map and reduce tasks, the Hadoop scheduling can be formulated as a two-stage multi-processor flow-shop problem. However, finding the optimal solution with the minimum response times (or flow times) is NP-hard \cite{26}. Therefore, in this section we propose LsPS, an adaptive scheduling algorithm which leverages the knowledge of workload characteristics to dynamically adjust the schedul-
ing schemes, aiming to improve efficiency in terms of job response times in systems, especially under heavy-tailed workloads \[27\].

The details of our designed LsPS scheduler are presented in Algorithms 3.1-3.3. Briefly, LsPS consists of the following three components:

- **Workload information collection**: monitor the execution of each job and each task, and gather the workload information.

- **Scheduling among multiple users**: allocate slots (both map and reduce slots) for users according to their workload characteristics, i.e., scheduling at Tier 1.

- **Scheduling for each individual user**: tune the scheduling schemes for jobs from each individual user based on that user’s job size distribution, i.e., scheduling at Tier 2.

Algorithm 3.1 Overview of the LsPS

1. When a new job from user i is submitted
 a. Estimate job size and avg. job size S_i^* of user i using Eq. 3.5;
 b. Adjust slot shares among all active users, see Alg. 3.2;
 c. Tune the job scheduling scheme for user i, see Alg. 3.3;
2. When a task of job j from user i is finished
 a. Update the estimated average task execution time $t_i^{*,j}$;
3. When the j-th job from user i is finished
 a. Measure avg. map/reduce task execution time $t_i^{m,j} / t_i^{r,j}$ and map/reduce task number $n_i^{m,j} / n_i^{r,j}$;
 b. Update history info. of user i, i.e., $\bar{t}_i, \bar{S}_i, CV_i$, using Eq. (3.1-3.4);
4. When a free slot is available
 a. Sort users in a non-increasing order of deficits $AS_i - SU_i$;
 b. Assign the slot to the first user u_i^* in the sorted list;
 c. Increase num. of actual received slots AS_i^* by 1;
 d. Choose a job from user u_i^* to get service based on the current scheduling scheme.

LsPS appropriately allocates slots for Hadoop users and guides each user to select the right scheduling algorithm for their own job queue, even under highly variable and heavy-tailed workloads. In the remainder of this section, we describe the detailed implementation of the above three components. Table 3.3 lists some notations used in the rest of this section.

3.1.2.1 Workload Information Collection

As discussed in Section 3.1.1 when a Hadoop system is shared by multiple users, job sizes and patterns of each user must be considered for designing an efficient scheduling
Table 3.3: Notations used in the algorithm.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U / u_i</td>
<td>number of users / i-th user, $i \in [1, U]$</td>
</tr>
<tr>
<td>$J_i / \text{job}_{i,j}$</td>
<td>set of all user i's jobs / j-th job of user i, $\text{job}_{i,j} \in J_i$</td>
</tr>
<tr>
<td>$t^m_{i,j} / t^r_{i,j}$</td>
<td>average map/reduce task execution time of $\text{job}_{i,j}$</td>
</tr>
<tr>
<td>$\bar{t}^m_i / \bar{t}^r_i$</td>
<td>average map/reduce task execution time of jobs from u_i</td>
</tr>
<tr>
<td>$n^m_{i,j} / n^r_{i,j}$</td>
<td>number of map/reduce tasks in $\text{job}_{i,j}$</td>
</tr>
<tr>
<td>$s_{i,j}$</td>
<td>size of $\text{job}_{i,j}$, i.e., total exe. time of map and reduce tasks</td>
</tr>
<tr>
<td>\bar{S}_i / \bar{S}_i</td>
<td>average size of completed/current jobs from u_i</td>
</tr>
<tr>
<td>CV_i / CV_i^*</td>
<td>coefficient of variation of completed/current job sizes of u_i</td>
</tr>
<tr>
<td>$SU_i / SJ_{i,j}$</td>
<td>the slot share of u_i / the slot share of $\text{job}_{i,j}$</td>
</tr>
<tr>
<td>AS_i</td>
<td>the slot share that u_i actually received</td>
</tr>
</tbody>
</table>

Therefore, a light-weight history information collector is introduced in LsPS for collecting the important historic information of jobs and users upon each job’s completion time. Here we collect and update the information of each job’s map and reduce tasks separately, through the same functions. To avoid redundant description, we use the term task to represent both types of tasks and the term size to represent size of either map phase or reduce phase of each job as follows.

In LsPS, the important history workload information that needs to be collected for each user u_i includes its average task execution time \bar{t}^m_i (and \bar{t}^r_i), average size \bar{S}_i, and the coefficient of variation of sizes CV_i. We here adopt the Welford’s one-pass algorithm \[28\] to on-line update these statistics as follows.

$$s_{i,j} = t^m_{i,j} \cdot n^m_{i,j} + t^r_{i,j} \cdot n^r_{i,j}, \quad (3.1)$$

$$\bar{S}_i = \bar{S}_i + (s_{i,j} - \bar{S}_i)/j, \quad (3.2)$$

$$v_i = v_i + (s_{i,j} - \bar{S}_i)^2 \cdot (j - 1)/j, \quad (3.3)$$

$$CV_i = \sqrt{v_i/j/\bar{S}_i}, \quad (3.4)$$

where $s_{i,j}$ denotes the size of the j-th completed job of user u_i (i.e., $\text{job}_{i,j}$), $t^m_{i,j}$ (resp. $t^r_{i,j}$) represents the measured average map (resp. reduce) task execution time of $\text{job}_{i,j}$, $n^m_{i,j}$ (resp. $n^r_{i,j}$) means the measured map (resp. reduce) task number of the $\text{job}_{i,j}$. We remark that a job’s size $s_{i,j}$ is calculated here as the summation of the execution times of all tasks from that particular job, which is independent on the level of task concurrency, i.e., concurrently running multiple map (or reduce) tasks of that job. Additionally, v_i/j denotes the variance of u_i’s job sizes. \bar{S}_i and v_i are both initialized as 0 and updated each time when a new job is finished and its information.
is collected. The average map (resp. reduce) task execution time \bar{t}_m^i (resp. \bar{t}_r^i) can be updated as well with Equations (3.2-3.4) by replacing $s_{i,j}$ with $t_{m}^{i,j}$ (resp. $t_{r}^{i,j}$).

We use a moving window to collect and update the workload information of each user. Let T_W be a window for monitoring the past scheduling history. In each monitoring window, the system completes exactly W jobs; we set $W = 100$ in all the experiments presented in the paper. We also assume that the scheduler is able to correctly measure the information of each completed job, such as its map/reduce execution times as well as the number of map/reduce tasks. We remark that this assumption should be reasonable for most Hadoop systems.

Upon each job’s completion, LsPS updates the workload statistics for job owner using the above equations, i.e., Eq.s (3.1)-(3.4). The statistic information collected in the present monitoring window will then be utilized by LsPS to tune the schemes for scheduling the following W jobs arriving in the next window, see Algorithm 3.1 step 3.

3.1.2.2 Scheduling Among Multiple Users

In this subsection, we present our algorithm (i.e., Algorithm 2) for scheduling among multiple users. Our goal is to decide the deserved amount of slots and allocate appropriate number of slots for each active user to run their jobs. In a MapReduce system, there are two types of slots, i.e., map slots and reduce slots. Therefore, we have designed two algorithms, one for allocating map slots and the other for allocating reduce slots. However, they share the same design. For simplicity, we present a general form of the algorithm in the rest of this subsection. We use the general terms similar as in Section 3.1.2.1 to represent both type of tasks.

Basically, our solution is motivated by the drawbacks of Fair scheduler, which generates long average job response times when the job sizes of multiple users vary a lot (see Section 3.1.1.1). We found that tuning the slot share ratio among users based on their average job sizes can help reduce the average job response times. Therefore, we propose to adaptively adjust the slot shares among all active users such that the share ratio is inversely proportional to the ratio of their job average sizes. For example, in a simple case of two users, if their average job size ratio is equal to 1:2, then the number of slots assigned to user 1 will be twice that to user 2. Consequently,
Algorithm 3.2Tier 1: Allocate slots for each user

Input: historic information of each active user;
Output: slot share SU_i of each active user;
for each user u_i do
 Update that user’s slot share SU_i using Eq.3.6
 for j-th job of user i, i.e., $job_{i,j}$ do
 if the current job scheduling based on job submission times then
 if $job_{i,j}$ has the earliest submission time in pool J_i then
 $SJ_{i,j} = SU_i$;
 else
 $SJ_{i,j} = 0$;
 end if
 else
 $SJ_{i,j} = SU_i / |J_i|$.
 end if
 end for
end for

LsPS implicitly gives higher priority to users with smaller jobs, resulting in shorter job response times.

One critical issue that needs to be addressed is how to correctly measure the execution times of map or reduce phase of jobs that are currently running or waiting for the service. In Hadoop systems, it is not possible to get the exact execution times of job’s tasks before it is finished. However, the job sizes are predictable in Hadoop system as discussed before in this section. In this work, we estimate the job sizes as “task number” times “average task execution time”, through the following steps: (1) the number of tasks of j-th job from user i ($job_{i,j}$), i.e., $n_{i,j}$, could be obtained immediately when the job is submitted; (2) similar to [29], we assume that the execution times of tasks from the same job are close to each other, and thus the average task execution time, $\bar{t}_{i,j}$, of the finished tasks of current running job $job_{i,j}$ could be used to represent the overall average task execution time $\bar{t}_{i,j}$ of that job; and (3) for those jobs that are still waiting for execution or jobs that are currently running but have no finished tasks, we consider the historic information and use the average task execution times of recently finished jobs from their user u_i, e.g., \bar{t}_i, to approximate their average task execution time $\bar{t}_{i,j}$.

Therefore, user u_i’s average map phase size of jobs is calculated as follows,

$$\bar{S}_i = \frac{1}{|J_i|} \sum_{j=1}^{|J_i|} n_{i,j}^m \cdot \bar{t}_{i,j}^m,$$

(3.5)

where J_i represents the set of jobs from user u_i that are currently running or waiting
for service. And the average reduce phase size of \(u_i \) could be calculated in the same way. We remark that due to dynamic changes in the workloads, instead of calculating the average map phase size of all the jobs that are submitted by a user, we only take the jobs that are currently running or waiting in the queue into consideration of job size calculation. Particularly, our scheduler recalculates the average job sizes and updates the slots assignment among users upon the submission time of new jobs. Therefore, our scheduler can adapt to the changes in the job sizes of each user by dynamically tuning the slot assignment.

As shown in Algorithm 3.2 step 1, once a new job arrives, LsPS updates the average size of that job’s owner and then adaptively adjusts the deserved map slot shares (\(SU_i \)) among all active users using Eq.(3.6).

\[
SU_i = SU^*_i \cdot (\alpha \cdot U \cdot \frac{1}{\sum_{i=1}^{U} \frac{1}{S_i^*}} + 1 - \alpha),
\]

\(\forall i, SU_i > 0, \)

\[
\sum_{i=1}^{U} SU_i = \sum_{i=1}^{U} SU^*_i,
\]

where \(SU^*_i \) represents the deserved slot shares for user \(u_i \) under the Fair scheme, i.e., equally dispatching the slots among all users, \(U \) indicates the number of users that are currently active in the system, and \(\alpha \) is a tuning parameter within the range from 0 to 1. Parameter \(\alpha \) in Eq.(3.6) can be used to control how aggressively LsPS biases towards the users with smaller jobs: when \(\alpha \) is close to 0, our scheduler increases the degree of fairness among all users, performing similar as Fair; and when \(\alpha \) is increased to 1, LsPS gives the strong bias towards the users with small jobs in order to improve the efficiency in terms of job response times. In the remainder of the paper, we set \(\alpha \) as 1 if there is no explicit specification. We remark that when all users have the same average job sizes, one can get \(SU_i \) equal to \(SU^*_i \), i.e., fairly allocating slots among users. We also note that when using Eq.(3.6) to calculate the \(SU_i \) for each user, it is guaranteed that no active users gets starved for map/reduce slots, see Eq.(3.7), and all available slots in the system are fully distributed to active users, see Eq.(3.8).

The resulting deserved slot shares (i.e., \(SU_i \)) are not necessarily equal to the actual assignments among users (i.e., \(AS_i \)). They will be used to determine which user can receive the slot that just became available for redistribution, see Algorithm 3.2 step
2. LsPS sorts all active users in a non-increasing order of their deficits, i.e., the gap between the expected assigned slots \(SU_i \) and the actual received slots \(AS_i \), and then dispatches that particular slot to the user with the largest deficit. Additionally, it might happen in the Hadoop system that some users have high deficits but their actual demands on map/reduce slots are less than the expected shares. In such a case, LsPS re-distributes the extra slots to those users who have lower deficits but need more slots for serving their jobs.

3.1.2.3 Scheduling for A User

The second design principle used in LsPS is to dynamically tune the scheduling scheme for jobs within an individual user by leveraging the knowledge of job size distribution. As observed in Section 3.1.1.2, the scheme of equally distributing shared resources outperforms by avoiding small jobs to waiting behind large ones. However, when the jobs have similar sizes, scheduling jobs based on their submission times becomes superior to the former one.

Algorithm 3.3 Tier 2: Tune job scheduling for each user

| Input: | historic information of each active user; |
| Output: | UseFIFO vector; |
| for each user \(u_i \) do |
| if user \(u_i \) is active, i.e., \(|J_i| > 1 \) then |
| calculate the \(CV_i^* \) of current jobs; |
| if \(CV_i^* < 1 \) and \(CV_i < 1 \) then |
| schedule current jobs based on their submission times; |
| end if |
| if \(CV_i^* > 1 \) or \(CV_i > 1 \) then |
| equally allocate slots among current jobs; |
| clear history information and restart collection. |
| end if |
| end if |
| end for |

Therefore, our algorithm considers the \(CV \) of job sizes, i.e., map size plus reduce size, of each user to determine which scheme should be used to distribute the free slots to jobs. To improve the accuracy of estimating \(CVs \) of each user’s current job sizes, we combine the history information of recently finished jobs and the estimated size distribution of current jobs that are running or waiting in system. The history information \((CV_i) \) of each user is provided by the history information collector described in Section 3.1.2.1 and the current estimation \(CV_i^* \) is calculated based on the
estimated job sizes described in Section 3.1.2. When the two values of a user are both smaller than 1, the LsPS scheme schedules the current jobs in that user’s sub queue in the order of their submission times, otherwise the user level scheduler will fairly assign slots among jobs. When the two values are conflicting, i.e., $CV_i > 1$ and $CV_i^* < 1$ or vise versa, which means the user’s workload pattern may change, the fair scheme will be adopted at this time, and the history information will be cleared and a new collection window will start at this time, see the pseudo-code in Algorithm 3.3.

3.1.3 Model Description

In this section, we introduce a model that is developed to emulate a classic Hadoop system. The purpose of this model is twofold: 1) to capture the actual execution of Hadoop jobs with multiple map and reduce tasks; and 2) to compare various Hadoop scheduling schemes and give the first proof of our new approach. Later, we will evaluate the performance of these schemes in a real Hadoop system.

![Figure 3.2: Modeling a Hadoop MapReduce cluster.](image)

The model, as shown in Fig. 3.2, consists of two queues for map tasks (Q_m) and reduce tasks (Q_r), respectively. Once a job is submitted, its tasks will be inserted into Q_m (resp. Q_r) through the map (resp. reduce) task dispatcher. Furthermore, the model includes s servers to represent s available slots in the system, such that s_m servers are used to serve map tasks while the remaining servers, i.e., $s_r = s - s_m$, connect to the reduce queue for executing reduce tasks. Note that the values of {s_m, s_r} are based on the actual Hadoop configuration.
An important feature of MapReduce jobs need to be considered in the model is the dependency between map and reduce tasks. Typically, in a Hadoop cluster, there is a parameter which decides when a job can start its reduce tasks. By default, this parameter is set as 5%, which indicates that the first reduce task can be launched when 5% of the map tasks are committed. Under this setting, a job’s first wave of reduce tasks will overlap with its map phase and could prefetch the output of map tasks in the overlapping period. However, previous work [30] found that this setting would lead to performance degradation under the Fair scheduling policy and proposed to launch reduce tasks gradually according to the progress of map phase. We further found that delaying the launch time of reduce tasks, i.e., setting the parameter to a large value such as 100%, can improve the performance of the Fair and the other slots sharing based schedulers. Therefore, in our experiments, we set the parameter to 100%, i.e., running reduce tasks when all map tasks are completed, in all the three policies (i.e., FIFO, Fair and our LsPS). However, we remark that this is not a necessary assumption. Our scheduler works in the same way under the other two cases, i.e., launching the first reduce task when 5% of the map tasks are committed or launching the reduce tasks gradually according to the progress of map phase.

3.1.4 Evaluation

In this section, we turn to present the performance evaluation of the proposed LsPS scheduler, which aims to improve the efficiency of a Hadoop system, especially with highly variable and/or bursty workloads from different users.

3.1.4.1 Simulation Evaluation

We first evaluate LsPS with our simulation model which is developed to emulate a classic Hadoop system. On top of this model, we use trace-driven simulations to evaluate the performance improvement of LsPS in terms of average job response times. Later, we will verify the performance of LsPS by implementing the proposed policy as a plug-in scheduler in an EC2 Hadoop cluster.

In our simulations, we have U users $\{u_1, \ldots, u_i, \ldots, u_U\}$ to share the Hadoop cluster by submitting J_i jobs to the system. The specification of users include their job inter-arrival times and job sizes, which are created based on the specified distributions and
methods. Recall that each Hadoop job size is determined by the number of map (resp. reduce) tasks from that job as well as the execution time of each map (resp. reduce) task. In our model, we consider to change the distributions of map/reduce task numbers for investigating various job size patterns, while fixing the uniform distribution to draw the execution times of map/reduce tasks.

In general, we consider the following four different distributions to generate job inter-arrival times and job map/reduce task numbers.

- Uniform distribution (u), which indicates similar job sizes.
- Exponential distribution (e), which implies medium diversity of job sizes or inter-arrival times.
- Hyper-exponential distribution (h), which means high variance of traces.
- Bursty pattern (b), which indicates high variance and high auto-correlation of traces.
We first consider two simple cases where the Hadoop cluster is shared by two users. We evaluate the impacts of different job size patterns in case 1 and different job arrival patterns in case 2. We then validate the robustness of LsPS with a complex case where the cluster is shared by multiple users with different job size and job arrival patterns.

Simple Case 1-Two Users with Diverse Job Size Patterns Consider a simple case of two users, i.e., u_1 and u_2, that concurrently submit Hadoop jobs to the system. We first focus on evaluating different Hadoop schedulers under various job size patterns, i.e., we conduct experiments with different job size distributions for u_2, but always keeping the uniform distribution to generate job sizes for u_1. Specifically, we consider u_2 with (1) similar job sizes; (2) high variability in job sizes; and (3) high variability and strong temporal dependence in job sizes. We also set the job size ratio between u_1 and u_2 as 1:1, i.e., two users having the same average job sizes. Furthermore, both users have the exponentially distributed job interarrival times with the same mean of 300 seconds.

Figure 3.3 shows the mean job response times of both users under the different policies and the relative improvement with respect to Fair. The mean job response times of each user are presented in the figure as well. Job response time is measured from the moment when that particular job is submitted to the moment that all the associated map and reduce tasks are finished. We first observe that high variability in job sizes dramatically degrades the performance under FIFO as a large number of small jobs are stuck behind the extremely large ones, see plot (a) in Figure 3.3. In contrast, both Fair and LsPS effectively mitigate such negative performance effects by equally distributing available slots between two users and within a single user. Our policy further improves the overall performance by shifting the scheduler to FIFO for the jobs from u_1 and thus significantly reducing its mean job response time by 60% and 62% with respect to Fair when the job sizes of user 2 are highly variable (i.e., “u:h”) and temporally dependent (i.e., “u:b”), respectively, see plot (b) in Figure 3.3. On the other hand, Fair loses its superiority when both users have similar job sizes, while our new scheduler bases on the features of both users’ job sizes to tune the scheduling at two tiers and thus achieves the performance close to the best one.

To further investigate the tail of job response times, we plot in Figure 3.4 the
complementary cumulative distribution functions (CCDFs) of job response times, i.e.,
the probability that the response times experienced by individual jobs are greater than
the value on the horizontal axis, for both users under the three scheduling policies.
Consistently, almost all jobs from the two users experience shorter response times
under Fair and LsPS than under FIFO when job sizes of u_2 are highly variable. In
addition, compared to Fair, LsPS reduces the response times for more that 60% of
jobs, having shorter tails in job response times.

Figure 3.5: Average job response times of (a) two users, (b) user 1, and (c) user 2 under
three different scheduling policies. The relative job size ratio between two users is (I) 1:10,
and (II) 10:1.

Figure 3.6: CCDFs of response times of all jobs under three different scheduling policies.
The relative job size ratio between two users is (I) 1:10, and (II) 10:1.
In order to analyze the impacts of relative job sizes on LsPS performance, we conduct another two sets of experiments with various job size ratios between two users, i.e., we keep the same parameters as the previous experiments but tune the job sizes of \(u_2 \) such that we have the average job size of \(u_1 \) is 10 times less (resp. more) than that of \(u_2 \), see the results shown in Figure 3.5(I) (resp. Figure 3.5(II)). In addition, we tune the job arrival rates of \(u_2 \) to keep the same loads in the system. Recall that our LsPS scheduler always gives higher priority, i.e., assigning more slots, to the user with smaller average job size, see Section 3.1.2.2. As a result, LsPS achieves non-negligible improvements of overall job response times no matter which user has smaller job sizes, see plots (a) in Figure 3.5(I) and (II). Further confirmation of this benefit comes from the plots in Figure 3.6(I) and (II), which show that most jobs experience the shortest response times when the scheduling is LsPS. Indeed, the part of the workload whose job sizes are large receives increased response times, but the number of penalized jobs is less than 5% of the total.

We also observe that under the cases of two different job size ratios, LsPS always achieves significant improvement in job response times for the user which submits small jobs in average by assigning more slots to that user, see plot (b) in Figure 3.5(I) and plot (c) in Figure 3.5(II). Meanwhile, although LsPS discriminately treats another user (i.e., having larger jobs) with less resource, this policy does not always sacrifice that user’s performance. For example, as shown in plot (c) of Figure 3.5(I), when job sizes of \(u_2 \) are highly variable and/or strongly dependent, shorter response times are achieved under LsPS or \(\text{Fair} \) than under FIFO because small jobs now have the reserved slots without waiting behind the large ones. Another example can be found in plot (b) of Figure 3.5(II), where we observe that LsPS is superior to \(\text{Fair} \) on the performance of user 1 by switching the tier 2 scheduling algorithm to FIFO.

Simple Case 2-Two Users with Diverse Job Arrival Patterns We now turn to consider the changes in job arrival patterns. We conduct experiments with varying arrival processes of the second user, i.e., \(u_2 \), but always fixing the uniform job size distributions for both users as well as the relative job size ratio between them as 1:10. Therefore, the job interarrival times of \(u_2 \) are drawn from three different arrival patterns, i.e., exponential, hyper-exponential and bursty, while user 1’s job interarrival times are exponentially distributed in all the experiments. We then depict the average
job response times of two users in Figure 3.7 and the CCDFs of job response times in Figure 3.8.

Consistent to the previous experiments, our LsPS scheduler outperforms in terms of the overall job response times, see plot (a) in Figure 3.7. We observe that this benefit indeed comes from the response time improvement of u_1, i.e., LsPS assigns u_1 with more slot shares due to its smaller average job size and further schedules its jobs based on the FIFO discipline because its job sizes have low variability. However, comparing to FIFO, this outcome unfortunately penalizes user 2, especially when this user’s arrival process is hyper-exponential or bursty, see plot (c) in Figure 3.7. Meanwhile, due to the uniform job size distribution, LsPS schedules the jobs from u_2 in the order of their submission times, which indeed compensates for the less resources and thus reduces the average response time when compared to Fair. The CCDFs shown in Figure 3.8 further confirm that a large portion of jobs experiences the shortest response times under LsPS than under the other two policies.

Complex Case-Multiple Users with Diverse Job Arrival/Size Patterns
To further verify the robustness of LsPS, we conduct experiments under a more complex case of 6 users which have the mixed workloads of varying job arrival and job size patterns. Table 3.4 presents the detailed experimental settings. Here, users with larger IDs have relatively larger job sizes in average. We also adjust the average arrival rate of each user such that all the users submit the same load to the system. Table 3.5 and Figure 3.9 present the average job response times as well as the distributions of job response times of all users under the three different scheduling policies, i.e., FIFO, Fair and LsPS. The average job response times of each user are also shown in the table. Furthermore, in order to analyze the impact of parameter α in Eq. 3.6, Table 3.4 shows the simulation results under LsPS with α equal to 0.3, 0.6 and 1.0.

Table 3.4: Experimental settings for each user.

<table>
<thead>
<tr>
<th>User</th>
<th>Job Size Pattern</th>
<th>Job Arrival Pattern</th>
<th>Average Job Size Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bursty</td>
<td>Hyper-exponential</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Exponential</td>
<td>Exponential</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Uniform</td>
<td>Exponential</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Hyper-exponential</td>
<td>Exponential</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Uniform</td>
<td>Bursty</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Hyper-exponential</td>
<td>Hyper-exponential</td>
<td>100</td>
</tr>
</tbody>
</table>

We first observe that LsPS with different α significantly improves the overall job response times compared to FIFO and Fair. Meanwhile, the average response times of the first four users are improved as well under LsPS because those users have relatively smaller job sizes and thus receive more map/reduce slots for executing their jobs. On the other hand, although the last two users u_5 and u_6 are assigned with the least number of slots, their average job response times have not been dramatically increased. In contrast, their jobs even experience faster response times compared to Fair for u_5 and to Fair and FIFO for u_6. The main reason is because LsPS switches the scheduling for each user between FIFO and Fair based on their job size distributions and thus improves that particular user’s response times. Additionally, LsPS completes the jobs from the first four users within a short time period such that the occupied slots will be released soon and then reassigned to the last two users, which further decreases the job response times of these two users.

Recall that parameter α in Eq. 3.6 is a tuning parameter to control how aggressively LsPS discriminates large jobs from small ones. The larger the α is, the
stronger bias is given towards the users with small jobs. Table 3.5 shows that LsPS with $\alpha = 1.0$ introduces the strongest bias on user slot shares and achieves the best response time improvement. Therefore, we set $\alpha = 1.0$ in the remainder of this paper.

Table 3.5: Average response times (in seconds) of all users and each user under different scheduling policies.

<table>
<thead>
<tr>
<th>User</th>
<th>FIFO</th>
<th>Fair</th>
<th>LsPS $\alpha = 0.3$</th>
<th>LsPS $\alpha = 0.6$</th>
<th>LsPS $\alpha = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7357.60</td>
<td>211.43</td>
<td>163.00</td>
<td>150.05</td>
<td>142.51</td>
</tr>
<tr>
<td>2</td>
<td>11520.03</td>
<td>283.43</td>
<td>234.64</td>
<td>222.00</td>
<td>220.20</td>
</tr>
<tr>
<td>3</td>
<td>10822.45</td>
<td>475.00</td>
<td>276.18</td>
<td>258.88</td>
<td>254.41</td>
</tr>
<tr>
<td>4</td>
<td>10626.55</td>
<td>1182.14</td>
<td>742.41</td>
<td>734.50</td>
<td>647.84</td>
</tr>
<tr>
<td>5</td>
<td>12017.48</td>
<td>40677.55</td>
<td>22637.01</td>
<td>17557.73</td>
<td>13317.92</td>
</tr>
<tr>
<td>6</td>
<td>11346.46</td>
<td>3318.84</td>
<td>3194.37</td>
<td>4760.66</td>
<td>5587.35</td>
</tr>
<tr>
<td>All</td>
<td>8488.00</td>
<td>939.24</td>
<td>583.05</td>
<td>505.94</td>
<td>441.66</td>
</tr>
</tbody>
</table>

Figure 3.9: CCDFs of job response times under different scheduling policies under the complex case of 6 users having the mixed workloads.

3.1.4.2 Case Studies in Amazon EC2

To further verify the effectiveness and robustness of our new scheduler, we implement and evaluate the LsPS algorithms in Amazon EC2, a cloud platform that provides pools of computing resources to developers for flexibly configuring and scaling their computational capacity on demand.

Experimental Setting In particular, we lease a m1.large instance as master node, which provides 2 virtual cores with 2 EC2 Compute Units each, 7.5 GB memory, and 850 GB storage to perform heartbeat and jobtracker routines for job scheduling. We also use the same 11 m1.large instances to launch slave nodes, each of which is configured with two map slots and two reduce slots. Such a configuration ensures
that the system bottleneck is not our scheduler on master node, while the overall job response times depend on the scheduling algorithms as well as the processing capability of each slave node.

As the Hadoop project provides APIs to support pluggable schedulers, we implement our proposed LsPS scheduling policy in Amazon Hadoop by extending the TaskScheduler interface. In particular, we add a module in our scheduler to periodically predict the job sizes of users based on the execution times of finished tasks (which are recorded for logging purpose in original Hadoop implementation). We also integrate another module to calculate the slot share between users upon the submission of new jobs and assign tasks of different users according to the deficiency between their running tasks and deserved slot assignments.

The benchmarks we consider for performance evaluation includes the following four classic MapReduce applications.

- **WordCount** - taking text files as job inputs and computing the occurrence frequency of each word in input files. The map tasks take one line each time and emit key/value pairs of each word in the line and count 1, and the reduce tasks sum up the counts for each word and emit the key/value pairs of each individual word in files and its total occurrence.

- **PiEstimator** - estimating the value of π using quasi-Monte Carlo method, where map tasks generate random points in a unit square and then count the number of points that locate inside and outside of the inscribed circle of the square, while reduce tasks accumulate points inside/outside results from the map tasks.

- **Grep** - extracting and counting the strings in input files that match the given regular expression. Each map task takes lines of input files, matches the user provided regular expression and emits key/value pairs of matching string and count 1. The reduce tasks then sum the frequencies of each matching string.

- **Sort** - taking sequential files as inputs and fragmenting and sorting the input data. The map and reduce functions are Hadoop predefined IdentifyMapper and IdentifyReducer which pass inputs directly to the output through the MapReduce framework.
In addition, the `randomtextwriter` program is used to generate a random file as the input to WordCount and Grep applications. We also run the `RandomWriter` application to write 10G of random data, that is used as the input to Sort applications. For PiEstimator applications, we set the sample space at each map task as 100 million random points. We have 20 map tasks for each PiEstimator job, thus the total number of random points for one π estimation is 2 billion.

Workloads with Mixed Applications We conduct experiments with the mixed MapReduce applications, aiming to evaluate LsPS in a diverse environment of both CPU-bound applications, such as PiEstimator, and IO-bound applications, e.g., WordCount and Grep Applications. In this experiment, there are four users which submit a set of jobs for one of the above four MapReduce applications, according to the specified job size and arrival patterns, see Table 3.6.

<table>
<thead>
<tr>
<th>User</th>
<th>Job Type</th>
<th>Average Input Size</th>
<th>Job Arrival Pattern</th>
<th>Average Inter-arrival Time</th>
<th>Submission Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WordCount</td>
<td>100MB</td>
<td>Exponential</td>
<td>20 sec</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>PiEstimator</td>
<td>-</td>
<td>Uniform</td>
<td>30 sec</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Grep</td>
<td>2000MB</td>
<td>Bursty</td>
<td>100 sec</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Sort</td>
<td>10GB</td>
<td>Uniform</td>
<td>600 sec</td>
<td>5</td>
</tr>
</tbody>
</table>

The experimental results of overall and each user’s average job response times are shown in Table 3.7. We first observe that LsPS reduces the overall job response times by a factor of 3.5 and 1.8 over FIFO and `Fair`, respectively. We interpret it as an outcome of setting suitable scheduling algorithms for each user based on their corresponding workload features. More importantly, LsPS significantly reduces the average response times for the first three users and even slightly improves the average response time of user 4 which indeed is assigned with less resources due to large job size.

The CCDFs of job response times are depicted in Figure 3.10. A large fraction of jobs experience faster response times under LsPS than under FIFO and `Fair`, while the number of penalized jobs which receive increased response times is less than 3% of the total. Summarizing, the real experimental results are consistent with the results shown in our simulations (see Section 3.1.4.1), which further confirm the effectiveness and robustness of our new LsPS scheduler.
Table 3.7: Average response times (in seconds) of all users and each user in the Amazon Hadoop cluster.

<table>
<thead>
<tr>
<th>User</th>
<th>FIFO</th>
<th>Fair</th>
<th>LsPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>251.36</td>
<td>121.18</td>
<td>67.50</td>
</tr>
<tr>
<td>2</td>
<td>280.06</td>
<td>149.95</td>
<td>74.79</td>
</tr>
<tr>
<td>3</td>
<td>235.33</td>
<td>118.36</td>
<td>75.18</td>
</tr>
<tr>
<td>4</td>
<td>330.20</td>
<td>248.00</td>
<td>209.00</td>
</tr>
<tr>
<td>All</td>
<td>259.61</td>
<td>132.90</td>
<td>74.16</td>
</tr>
</tbody>
</table>

Figure 3.10: CCDFs of job response times when four different MapReduce applications are running in Amazon EC2.

Non-Stationary Workloads In the previous sections, we have confirmed that LsPS performs effectively under a stationary workload, where all users have the stable job size/arrival patterns within the whole experiments. Now, we turn to evaluate LsPS under non-stationary workloads, further verifying its effectiveness when the workloads of some users change over time.

In particular, we conduct experiments with two users which submit a set of Word-Count jobs to our Hadoop cluster consisting of 18 map and 18 reduce slots on m1.large instances (i.e., slave nodes) in Amazon EC2. We further generate a non-stationary workload by changing the job size/arrival patterns of user 1 while keeping fixed user 2’s input file sizes and job interarrival times both exponentially distributed with mean of 500MB and 25 seconds, respectively. Table 3.8 illustrates the three changes in user 1’s workloads.

Table 3.8: Experimental settings for user 1’s non-stationary workload.

<table>
<thead>
<tr>
<th>Periods</th>
<th>Average Input Size</th>
<th>Input Size Pattern</th>
<th>Inter-arrival Time</th>
<th>Submission #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100MB</td>
<td>Uniform</td>
<td>5 sec</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>100MB</td>
<td>HyperExponential</td>
<td>5 sec</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>2500MB</td>
<td>Uniform</td>
<td>125 sec</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 3.9 shows the mean response times of two users as well as of each user under the *Fair* and LsPS policies. The average job response times measured during each period are also shown in the table. We observe that LsPS successfully captures the changes in user 1’s workloads and dynamically tunes the two-level scheduling (i.e., between two users and within each user) based on the measured job size/arrival patterns. As a result, LsPS always achieves noticeable response time improvement by 26%, 24%, and 40% during the three periods and by 34% in overall with respect to *Fair*.

Table 3.9: Average job response times (in seconds) of Fair and LsPS under non-stationary workloads

<table>
<thead>
<tr>
<th>User</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fair</td>
<td>LsPS</td>
<td>Fair</td>
<td>LsPS</td>
</tr>
<tr>
<td>1</td>
<td>108.96</td>
<td>50.30</td>
<td>100.72</td>
<td>60.78</td>
</tr>
<tr>
<td>2</td>
<td>277.90</td>
<td>354.50</td>
<td>326.70</td>
<td>329.60</td>
</tr>
<tr>
<td>All</td>
<td>136.32</td>
<td>101.00</td>
<td>138.38</td>
<td>105.58</td>
</tr>
</tbody>
</table>

To better understand LsPS’s processing on non-stationary workloads, Figure 3.11 illustrates how LsPS dynamically adjusts its two-level scheduling algorithms in an on-line fashion. Specifically, the transient distributions of 18 map slots between two users are depicted in Figure 3.11(a), where red areas indicate the slots assigned to user 1 while greed areas represent those assigned to user 2. We also plot the changes of the scheduling within user 1 as a function of time in Figure 3.11(b).

As we observed, during the first period, LsPS assigns more shares to user 1 than to user 2 because LsPS detects that user 1 has smaller average job size, see Figure 3.11(a). Meanwhile, the jobs from user 1 are scheduled according to the FIFO discipline, see Figure 3.11(b), which further reduces the response times of user 1 and thus results in better overall response times during this period. Once LsPS captures the changes in user 1’s job size distribution, i.e., from uniform to hyperexponential, LsPS quickly switches the scheduling within user 1 from FIFO to *Fair* and thus consistently achieves shorter response times in the second period, see Figure 3.11(b). Later, when user 1 starts to submit large jobs with the uniform distribution, LsPS turns to dispatch more resources to user 2, decreasing its job response times during the last period. On the other hand, user 1 still experiences shorter job response times than under *Fair* even though this user now receives less resources. We interpret this by observing the FIFO
scheduling for this user in the third period. Also, we note that the long delay existing in the shifting from period 2 to 3 indeed only affects few number of jobs because the job interval time actually becomes quite long during period 3.

Figure 3.11(c) further shows the number of jobs that are running or waiting for service under the *Fair* and LsPS policies, giving an evidence that LsPS can consistently improve the performance in terms of average job response times through dynamically adapting the scheduling to the workload changes. Therefore, we conclude that these results strongly demonstrate the effectiveness and robustness under both stationary and non-stationary workloads.

Figure 3.11: Illustrating (a) the distribution of slot shares between two users, where the red (resp. green) areas indicate the slots assigned to user 1 (resp. user 2); (b) the scheduling of jobs from user 1 across time, where “1” indicates “FIFO” and “0” indicates “*Fair*”; and (c) the transient number of jobs that are running or waiting for service under *Fair* and LsPS.
3.2 Self-Adjusting Slot Configurations for Hadoop MapReduce

Many companies’ core business rely on the ability of cluster computing frameworks to analyze massive user data. This kind of analysis in Hadoop platform, including data pre-processing, and data mining jobs, usually comes periodically in a batch fashion along with the increments of data. For example, LinkedIn \cite{31} depends on their Hadoop cluster’s ability of off-line processing daily generated user data to provide applications such as collaborative filtering and email generation. The key performance consideration in such use case is the throughput or total completion length (makespan) of a batch of MapReduce jobs. As discussed in Section \ref{sec:background}, the original Hadoop system design distinguishes the cluster resources as map slots and reduce slots to accelerate the processing of batch jobs under the FIFO policy. We find that the slot configuration has a significant impact on system performance in terms of makespan. Current Hadoop system configures static numbers of map slots and reduce slots. And the configurations are usually based on simple rule of thumbs without considering job characteristics. Our experiment results show that this kind of static setting is usually hard to optimize and may hinder the performance improvement of the entire cluster.

We design and implement a new mechanism to dynamically allocate slots for map and reduce tasks \cite{18,19}. The primary goal of the new mechanism is to improve the completion time (i.e., the makespan) of a batch of MapReduce jobs while retain the simplicity in implementation and management of the slot-based Hadoop design. The key idea of this new mechanism, named TuMM, is to automate the slot assignment ratio between map and reduce tasks in a cluster as a tunable knob for reducing the makespan of MapReduce jobs. The Workload Monitor (WM) and the Slot Assigner (SA) are the two major components introduced by TuMM. The WM that resides in the JobTracker periodically collects the execution time information of recently finished tasks and estimates the present map and reduce workloads in the cluster. The SA module takes the estimation to decide and adjust the slot ratio between map and reduce tasks for each slave node. With TuMM, the map and reduce phases of jobs could be better pipelined under priority based schedulers, and thus the makespan is reduced. We further investigate the dynamic slot assignments in heterogeneous envi-
environments, and propose a new version of TuMM, which sets the slot configurations for each individual node to reduce the makespan of a batch of jobs. We implement the presented schemes in Hadoop V0.20.2 and evaluate them with representative MapReduce benchmarks at Amazon EC2. Experimental results demonstrate the effectiveness and robustness of our schemes under both simple workloads and more complex mixed workloads.

3.2.1 Motivation

Currently, the Hadoop MapReduce framework uses fixed numbers of map slots and reduce slots on each node throughout the lifetime of a cluster. However, such a fixed slot configuration may lead to low resource utilizations and poor performance especially when the system is processing varying workloads. We use two simple cases to exemplify this deficiency. In each case, three jobs are submitted to a Hadoop cluster with 4 slave nodes and each slave node has 4 available slots. Details of the experimental setup are introduced in Section 3.2.5. To illustrate the impact of resource assignments, we also consider different static settings for map and reduce slots on a slave node. For example, when the slot ratio is equal to 1:3, we have 1 map slot and 3 reduce slots available per node. We then measure the overall lengths (i.e., makespans) for processing a batch of jobs, which are shown in Fig. 3.12.

![Figure 3.12: The makespans of jobs under case 1 (i.e., Classification) and case 2 (i.e., Grep). The map and reduce slot ratios on each slave node are set to 1:3, 2:2, and 3:1.](image)

Case 1: We first submit three Classification jobs to process a 10 GB movie rating data set. We observe that the makespan of these jobs is varying under different slot ratio settings and the best performance (i.e., shortest makespan) is achieved when each slave node has three map slots and one reduce slot, see the left column of Fig. 3.12.
To interpret this effect, we further plot the execution times of each task in Fig. 3.13. Clearly, Classification is a map-intensive application; for example, when we equally distribute resources (or slots) between map and reduce tasks, i.e., with the slot ratio of 2:2, the length of a map phase is longer than that of a reduce phase, see Fig. 3.13(a).

It follows that each job’s reduce phase (including shuffle operations and reduce operations) overlaps with its map phase for a long period. However, as the reduce operations can only start after the end of the map phase, the occupied reduce slots stay in shuffle for a long period, mainly waiting for the outputs from the map tasks. Consequently, system resources are underutilized.

For example, we tracked the cpu utilizations of each task in a slave node every 5 seconds and Table 3.10 shows part of the records in one of such overlapping periods. At each moment, the overall cpu utilization (i.e., the summation of cpu utilizations of the four tasks) is much less than 400%, for a node with 4 cores. We then notice that when we assign more slots to map tasks, e.g., with the slot ratio of 3:1, each job experiences a shorter map phase and most of its reduce phase overlaps with the following job’s map phase, see Fig. 3.13(b). The average cpu utilization is also
increased by 20% comparing to those under the the slot ratio of 2:2. It implies that for map-intensive jobs like Classification, one should assign more resources (slots) to map tasks in order to improve the performance in terms of makespan.

Table 3.10: Real time CPU utilizations of each task on a slave node in the overlapping time period of a job’s map and reduce phases. The slot ratio per node is 2:2.

<table>
<thead>
<tr>
<th>Time(sec)</th>
<th>ProcessId/TaskType</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3522/map 3564/map 3438/reduce 3397/reduce</td>
</tr>
<tr>
<td>1</td>
<td>147% 109% 26% 0%</td>
</tr>
<tr>
<td>6</td>
<td>103% 93% 0% 4%</td>
</tr>
<tr>
<td>11</td>
<td>93% 99% 8% 0%</td>
</tr>
<tr>
<td>16</td>
<td>100% 100% 0% 0%</td>
</tr>
<tr>
<td>21</td>
<td>97% 103% 0% 0%</td>
</tr>
</tbody>
</table>

Case 2: In this case, we turn to consider reduce-intensive applications by submitting three Grep jobs to scan the 10 GB movie rating data. Similar to case 1, we also investigate three static slot configurations.

First, we observe that each job takes longer time to process its reduce phase than its map phase when we have 2 map and 2 reduce slots per node, see Fig. 3.14(a). Based on the observation in case 1, we expect a reduced makespan when assigning more slots to reduce tasks, e.g., with the slot ratio of 1:3. However, the experimental results show that the makespan under this slot ratio setting (1:3) becomes even longer than that under the setting of 2:2, see the right column of Fig. 3.12. We then look closely at the corresponding task execution times, see Fig. 3.14(b). We find that the reduce tasks indeed have excess slots such that the reduce phase of each job starts too early and wastes time waiting for the output from its map phase. In fact, a good slot ratio should be set between 2:2 and 1:3 to enable each job’s reduce phase to fully overlap with the following job’s map phase rather than its own map phase.

In summary, in order to reduce the makespan of a batch of jobs, more resources (or slots) should be assigned to map (resp. reduce) tasks if we have map (resp. reduce) intensive jobs. On the other hand, a simple adjustment in such slot configurations is not enough. An effective approach should tune the slot assignments such that the execution times of map and reduce phases can be well balanced and the makespan of a given set can be reduced to the end.
3.2.2 System Model and Static Slot Configuration

In this section, we present a homogeneous Hadoop system model we considered and formulate the problem. In addition, we analyze the default static slot configuration in Hadoop and present an algorithm to derive the best configuration.

3.2.2.1 Problem Formulation

In our problem setting, we consider that a Hadoop cluster consisting of k nodes has received a batch of n jobs for processing. We use J to represent the set of jobs, $J = \{j_1, j_2, \ldots, j_n\}$. Each job j_i is configured with $n_m(i)$ map tasks and $n_r(i)$ reduce tasks. Let $st(i)$ and $ft(i)$ indicate the start time and the finish time of job j_i, respectively. In addition, we assume the Hadoop system sets totally S slots on all the nodes in the cluster. Let s_m and s_r be the number of map slots and reduce slots, respectively. We then have $S = s_m + s_r$. In this paper, our objective is to develop an algorithm to dynamically tune the parameters of s_m and s_r, given a fixed value of S, in order to minimize the makespan of the given batch of jobs, i.e., $\minimize\{\max\{ft(i), \forall i \in [1, n]\}\}$.

In a Hadoop system, the makespan of multiple jobs also depends on the job
scheduling algorithm which is coupled with our solution of allocating the map and reduce slots on each node. In this paper, we assume that a Hadoop cluster uses the default FIFO (First-In-First-Out) job scheduler because of the following two reasons. First, given \(n \) jobs waiting for service, the performance of FIFO is no worse than Fair in terms of makespan. In the example of “Case 2” mentioned in Section 3.2.1, the makespan under FIFO is 594 sec while Fair, another alternative scheduler in Hadoop, consumes 772 sec to finish jobs. Second, using FIFO simplifies the performance analysis because generally speaking, there are fewer concurrently running jobs at any time. Usually two jobs, with one in map phase and the other in reduce phase.

Furthermore, we use execution time to represent the workload of each job. As a MapReduce job is composed of two phases, we define \(w_m(i) \) and \(w_r(i) \) as the workload of map phase and reduce phase in job \(j_i \), respectively. We have developed solutions with and without the prior knowledge of the workload and we will discuss how to obtain this information later.

3.2.2.2 Static Slot Configuration with Workload Information

First, we consider the scenario that the workload of a job is available and present the algorithm for static slot configuration which is default in a Hadoop system. Basically, the Hadoop cluster preset the values of \(s_m \) and \(s_r \) under the constraint of \(S = s_m + s_r \) before executing the batch of jobs, and the slot assignment will not be changed during the entire process. We have developed the following Algorithm 3.4 to derive the optimal values of \(s_m \) and \(s_r \).

Our algorithm and analysis are based on an assumption that the time needed to finish the workload of map or reduce phase is inversely proportional to the number of slots assigned to the phase in a homogeneous Hadoop cluster. Given \(s_m \) and \(s_r \), the map (resp. reduce) phase of \(j_i \) needs \(\frac{n_m(i)}{s_m} \) (resp. \(\frac{n_r(i)}{s_r} \)) rounds to finish. In each round, \(s_m \) map tasks or \(s_r \) reduce tasks are processed in parallel and the time consumed is equal to the execution time of one map or one reduce task. Let \(t_m(i) \) and \(t_r(i) \) be the average execution time for a map task and a reduce task, respectively. The workloads of map and reduce phases are defined as

\[
w_m(i) = n_m(i) \cdot t_m(i), \quad w_r(i) = n_r(i) \cdot t_r(i).
\]

(3.9)
Algorithm 3.4 can derive the best static setting of s_m and s_r given the workload information. The outer loop (lines 1–10) in the algorithm enumerates the value of s_m and s_r (i.e., $S - s_m$). For each setting of s_m and s_r, the algorithm first calculates the workload ($w_m(i)$ and $w_r(i)$) for each job j_i in lines 3–5. The second inner loop (lines 6–8) is to calculate the finish time of each job. Under the FIFO policy, there are at most two concurrently running jobs in the Hadoop cluster. Each job’s map or reduce phase cannot start before the precedent job’s map or reduce phase is finished (we assume here that all jobs have more tasks than the slots number in system for the simplicity of discussion). More specifically, the start time of map tasks of job j_i, i.e., $st(i)$, is the finish time of j_{i-1}’s map phase, i.e., $st(i) = st(i - 1) + \frac{w_m(i-1)}{s_m}$.

Additionally, the start time of j_i’s reduce phase should be no earlier than both the finish time of j_i’s map phase and the finish time of j_{i-1}’s reduce phase. Therefore, the finish time of j_i is $ft(i) = \max(st(i) + \frac{w_m(i)}{s_m}, ft(i - 1)) + \frac{w_r(i)}{s_r}$. Finally, the variables Opt_{SM} and Opt_{MS} keep track of the optimal value of s_m and the corresponding makespan (lines 9–10), and the algorithm returns Opt_{SM} and $S - Opt_{SM}$ as the values for s_m and s_r at the end. The time complexity of the algorithm is $O(S \cdot n)$.

Algorithm 3.4 Static Slot Configuration

\begin{verbatim}
1: for $s_m = 1$ to S do
2: $s_r = S - s_m$
3: for $i = 1$ to n do
4: $w_m(i) = n_m(i) \cdot t_m(i)$
5: $w_r(i) = n_r(i) \cdot t_r(i)$
6: end for
7: for $i = 1$ to n do
8: $st(i) = st(i - 1) + \frac{w_m(i-1)}{s_m}$
9: $ft(i) = \max(st(i) + \frac{w_m(i)}{s_m}, ft(i - 1)) + \frac{w_r(i)}{s_r}$
10: end for
11: if $ft(n) < Opt_{MS}$ then
12: $Opt_{MS} = ft(n); Opt_{SM} = s_m$
13: end if
14: end for
15: return Opt_{SM} and $S - Opt_{SM}$
\end{verbatim}

3.2.3 Dynamic Slot Configuration Under Homogeneous Environments

As discussed in Section 3.2.1, the default Hadoop cluster uses static slot configuration and does not perform well for varying workloads. The inappropriate setting of s_m
and s_r may lead to extra overhead because of the following two cases:

1. If job j_i’s map phase is completed later than job j_{i-1}’s reduce phase, then the reduce slots will be idle for the interval period of $(st(i) + wm(i)) - ft(i - 1)$, see Fig. 3.15(a);

2. If job j_i’s map phase is completed earlier than the job j_{i-1}’s reduce phase, then j_i’s reduce tasks have to wait for a period of $ft(i - 1) - (st(i) + wm(i))$ until reduce slots are released by j_{i-1}, see Fig. 3.15(b).

Figure 3.15: Illustration of aligning the map and reduce phases. (a) and (b) are the two undesired cases mentioned above, and our goal is to achieve (c).

In this section, we present our solutions that dynamically allocate the slots to map and reduce tasks during the execution of jobs. The architecture of our design is shown in Fig. 3.16. In dynamic slot configuration, when one slot becomes available upon the completion of a map or reduce task, the Hadoop system will re-assign a map or reduce task to the slot based on the current optimal values of s_m and s_r.

There are totally $\sum_{i \in [1, n]} (nm(i) + nr(i))$ tasks and at the end of each task, Hadoop needs to decide the role of the available slot (either a map slot or a reduce slot). In this setting, therefore, we cannot enumerate all the possible values of s_m and s_r (i.e., $2\sum_{i}(nm(i) + nr(i))$ combinations) as in Algorithm 3.4. Instead, we modify our objective in the dynamic slot configuration as there is no closed-form expression of the makespan.

Our goal now is, for the two concurrently running jobs (one in map phase and the other in reduce phase), to minimize the completion time of these two phases. Our intuition is to eliminate the two undesired cases mentioned above by aligning the completion of j_i’s map phase and j_{i-1}’s reduce phase, see Fig. 3.15(c). Briefly, we use the slot assignment as a tunable knob to change the level of parallelism of map or reduce tasks. When we assign more map slots, map tasks obtain more system resources and could be finished faster, and vice versa for reduce tasks. In the rest of this section, we first present our basic solution with the assumption of prior knowledge
of job workload. Then, we describe how to estimate the workload in practice when it is not available. In addition, we present a feedback control-based solution to provide more accurate estimation of the workload. Finally, we discuss the design of task scheduler in compliance with our solution.

3.2.3.1 Basic Sketch With Prior Knowledge of Workload

Assume the workload information is available, at the end of a task, Hadoop can obtain the value of the remaining workload for both map and reduce phases. Intuitively, we should assign more slots (resources) to the task type that has heavier remaining workload. Assume j_i and j_{i-1} are two active jobs and j_{i-1} is in reduce phase while j_i is in map phase. At the end of a task, we can get the number of remaining map tasks of j_i and remaining reduce tasks of j_{i-1}, indicated by $n'_m(i)$ and $n'_r(i-1)$. Let $w'_m(i)$ and $w'_r(i-1)$ represent the remaining workload of j_i’s map phase and j_{i-1}’s reduce phase, we have:

$$w'_m(i) = n'_m(i) \cdot \bar{t}_m(i), \quad w'_r(i-1) = n'_r(i-1) \cdot \bar{t}_r(i-1),$$

(3.10)

To align the completions of these two phases, the best parameters should satisfy the following condition:

$$\frac{n'_m(i)}{s_m} \cdot \bar{t}_m(i) = \frac{n'_r(i-1)}{s_r} \cdot \bar{t}_r(i-1) \Rightarrow \frac{w'_m(i)}{s_m} = \frac{w'_r(i-1)}{s_r}$$

(3.11)
Therefore, the number of map and reduce slots should be proportional to their remaining workloads as shown in Eq. 3.12-3.13,

\[
\begin{align*}
s_m &= \lfloor \frac{w'_m(i)}{w'_m(i) + w'_r(i - 1)} \cdot S \rfloor, \\
s_r &= S - s_m,
\end{align*}
\] (3.12) (3.13)

where \(s_m\) and \(s_r\) represent the target numbers of map and reduce slots respectively, and \(S\) is the total number of slots in the cluster which is configured based on system capacity. Furthermore, we introduce the upper bound \(s^u_m\) and the lower bound \(s^l_m\) for the map slots assignment. When the estimated value of \(s_m\) exceeds the bounds, we use the bound value as the new \(s_m\) value instead. In our design, \(s^l_m\) is set to be the number of nodes in the cluster (\(k\)) such that there is at least one map slot on each node at any time. Similarly, \(s^u_m\) is set to be equal to \(S - s^l_m\) such that the reduce slots number in each node is always greater than or equal to 1. When a map or reduce task is finished, one slot becomes available. The Hadoop system calculates the values of \(s_m\) and \(s_r\) according to Eq. 3.12-3.13 If the current map slots are fewer than \(s_m\), then the available slot will become a map slot and serve a map task. Otherwise, it turns to a reduce slot. With this setting, the current map and reduce phases could finish at approximately the same time with a high system resource utilization.

3.2.3.2 Workload Estimation

Our solution proposed above depends on the assumption of prior knowledge of workload information. In practice, workload can be derived from job profiles, training phase, or other empirical settings. In some applications, however, workload information may not be available or accurate. In this subsection, we present a method that estimates the workload during the job execution without any prior knowledge.

We use \(w'_m\) and \(w'_r\) to represent the remaining workload of a map or reduce phase, i.e., the summation of execution time of the unfinished map or reduce tasks. Note that we only track the map/reduce workloads of running jobs, but not the jobs waiting in the queue. Basically, the workload is calculated as the production of the number of remaining tasks and the average task execution time of a job. Specifically, when a map or reduce task is finished, the current workload information needs to be updated, as shown in Algorithm 3.5 where \(n'_m(i)/ n'_r(i)\) is the number of unfinished
map/reduce tasks of job j_i, and $T_m(i)/T_r(i)$ means the average execution time of finished map/reduce tasks from j_i. Note that the execution time of each finished task is already collected and reported to the JobTracker in current Hadoop systems. In addition, we use Welford’s one pass algorithm to calculate the average of task execution times, which incurs very low overheads on both time and memory space.

Algorithm 3.5 Workload Information Collector

if a map task of job j_i is finished then

update the average execution time of a map task $T_m(i)$

$w'_m(i) = T_m(i) \cdot n'_m(i)$

end if

if a reduce task of job j_i is finished then

update the average execution time of a reduce task $T_r(i)$

$w'_r(i) = T_r(i) \cdot n'_r(i)$

end if

3.2.3.3 Feedback Control-based Workload Estimation

In this subsection, we present an enhanced workload estimation algorithm to achieve more accurate workload information. Our previous analysis adopts an assumption that the execution time of a map or reduce task is similar, represented by the average values $T_m(i)$ and $T_r(i)$, respectively. They are also used for calculating the workload w_m and w_r. This estimation works well in systems where the slots assignment is fixed. In our system design, however, the slots assignment is dynamically changed, which affects the per task execution time in practice. Assigning more slots to one type of tasks may cause the contention on a particular system resource and lead to an increased execution time of each following task in the same type. For example, in “Case 2” described in Section 3.2.1, when we use 1 map slot on each node, the average execution time of a map task is 18.5 sec. When we increase the number of map slots per node to 2, the average execution time of a map task becomes 23.1 sec with a 25% increase.

To overcome this issue, we have designed a feedback control based mechanism to tune the slots assignment. Under this mechanism, the slots assignment, s_m and s_r, is first calculated through Eq. 3.12 and 3.13. An additional routine is introduced to periodically update the workload information based on newly captured average task execution times. If the workloads have changed, then the slots assignment will also
be updated according to Eq. \ref{eq:sm} and \ref{eq:sr}.

\begin{align}
 s_m &= s_m + \left\lfloor \alpha \cdot \left(\frac{w'_m}{w'_m + w'_r} - \frac{w_m}{w_m + w_r} \right) \cdot S \right\rfloor, \quad \text{(3.14)} \\
 s_r &= S - s_m. \quad \text{(3.15)}
\end{align}

When the new estimated workloads, i.e., w'_m and w'_r, differ from the previous estimation, an integral gain parameter α is used to control the new assignment of slots based on the new estimation. The Hadoop system will iteratively calculate s_m and s_r (Eq. \ref{eq:sm} and \ref{eq:sr}) until there is no change on these two parameters. The value of α is set to be 1.2 in our system such that the slots assignment could converge quickly.

3.2.3.4 Slot Assigner

The task assignment in Hadoop works in a heartbeat fashion: the TaskTrackers report slots occupation situation to the JobTracker with heartbeat messages; and the JobTracker selects tasks from the queue and assigns them to free slots. There are two new problems need to be addressed when assigning tasks under TuMM. First, slots of each type should be evenly distributed across the slave nodes. For example, when we have a new slot assignment $s_m = 5, s_r = 7$ in a cluster with 2 slave nodes, a 2:3/4:3 map/reduce slots distribution is better than the 1:4/5:2 map/reduce slots distribution in case of resource contention. Second, the currently running tasks may stick with their slots and therefore the new slot assignments may not be able to apply immediately. To address these problems, our slot assignment module (SA) takes both the slots assignment calculated through Eq. \ref{eq:sm}-\ref{eq:sr} and the situation of currently running tasks into consideration when assigning tasks.

The process of SA is shown in Algorithm \ref{algo:sa}. The SA first calculates the map and reduce slot assignments of slave node x (line 1), indicated by $s_m(x)$ and $s_r(x)$, based on the current values of s_m and s_r and the number of running tasks in cluster. Because of the flooring operation in line 1, the assigned slots $(s_m(x) + s_r(x))$ on node x may be fewer than the available slots (S/k). In lines 3–6, we increase either $s_m(x)$ or $s_r(x)$ to compensate slot assignment. Our decision is based on the deficit of current map and reduce slots (line 3), where s_m / s_r represent our target assignment and rt_m / rt_r are the number of current running map/reduce tasks. Eventually, we assign a task to the available slot in lines 7–10. Similarly, the decision is made by comparing
the deficit of map and reduce tasks on node x, where $s_m(x)/s_r(x)$ are our target assignment and $rt_m(x)/rt_r(x)$ are the numbers of running tasks.

Algorithm 3.6 Slot Assigner

0: **Input:** Number of slave nodes in cluster: k
Total numbers of running map/reduce tasks: rt_m, rt_r;
0: **When** receive heartbeat message from node x with the number of running map/reduce tasks on node x: $rt_m(x), rt_r(x)$:
1: **Initialize** assignment of slots for node x:
\[s_m(x) \leftarrow \lfloor s_m/k \rfloor, s_r(x) \leftarrow \lfloor s_r/k \rfloor; \]
2: if $(s_m(x) + s_r(x)) < S/k$ then
3: if $(s_m - rt_m) > (s_r - rt_r)$ then
4: \[s_m(x) \leftarrow s_m(x) + 1; \]
5: else
6: \[s_r(x) \leftarrow s_r(x) + 1; \]
7: end if
8: end if
9: if $(s_m(x) - rt_m(x)) > (s_r(x) - rt_r(x))$ then
10: assign a map task to node x;
11: else
12: assign a reduce task to node x.
13: end if

3.2.4 Dynamic Slot Configuration Under Heterogeneous Environments

In the previous sections, we discussed the static and dynamic slot configuration in a homogeneous Hadoop cluster environment, where all servers have the same computing and memory capacities. However, heterogeneous environments are fairly common in today’s cluster systems. For example, system managers of a private data center could always scale up their data center by adding new physical machines. Therefore, physical machines with different models and different resource capacities can exist simultaneously in a cluster.

When deploying a Hadoop cluster in such a heterogeneous environment, we should no longer assume that all tasks from the same job have similar execution times. In this case, a task’s execution time highly depends on a particular node where that task is running. A job’s map tasks may run faster on a node which has faster cpu per slot while its reduce tasks may experience shorter execution times on the other nodes that have more memory per slot. Estimating the remaining workloads and deciding the slot configuration in this heterogeneous Hadoop cluster thus becomes more complex.
For example, assume a Hadoop job with 7 map tasks and a Hadoop cluster with two heterogeneous nodes such that node 1 is faster than node 2. Also assume that this cluster has been configured with 4 map slots in total and a map task of that job takes 1 second and 2 seconds to finish on node 1 and node 2, respectively. We note that in this heterogeneous Hadoop cluster, various slot configurations will yield different performance (e.g., the execution time) of this job. As illustrated in Figure 3.17 case 1, the total execution time of the map phase takes 3 seconds if we set 2 map slots on node 1 and 2 map slot on node 2. However, the map phase execution time can be improved to 3 seconds if we change the slot configures on these two nodes, i.e., 3 map slot on node 1 and 1 map slots on node 2. This situation indicates that it is harder to predict the time needed to finish the map phase or reduce phase in the heterogeneous environment, and evenly distribute the map (or reduce) slot assignments across the cluster will no longer work well.

We thus argue that the centralized method (i.e., the algorithms described in Section 3.2.3 for a homogeneous Hadoop cluster) which utilizes the overall workload information to set the slot assignments over the entire cluster does not work well
any more when the nodes in the cluster become heterogenous. Motivated by this, we present in this section a new version of TuMM, named H-TuMM, which dynamically sets the slot configurations for each node in a heterogeneous Hadoop cluster in order to reduce the makespan of a batch of Hadoop jobs.

3.2.4.1 Problem Formulation

The problem of finding the optimal slot assignment to map and reduce tasks in a heterogeneous Hadoop cluster that aligns the current running map and reduce workloads and minimizes the time required to finish current map and reduce workloads could be formulated as a linear programming problem as follows:

\[
\text{Minimize } \max \{v_i^m \cdot t_i^m\}, \forall i \in I, \quad (3.16)
\]

\[
\text{subject to :}
\]

\[
s_i^m + s_i^r = S^i, \forall i \in I, \quad (3.17)
\]

\[
\sum v_i^m \cdot s_i^m \geq n'_m, \forall i \in I, \quad (3.18)
\]

\[
\sum v_i^r \cdot s_i^r \geq n'_r, \forall i \in I, \quad (3.19)
\]

\[
(v_i^m - 1) \cdot t_i^m \leq v_i^m \cdot t_i^m, \quad \forall i, j \in I, \text{ if } t_i^m < t_j^r, \quad (3.20)
\]

\[
v_i^m \cdot t_i^m \leq (v_i^m + 1) \cdot t_i^m, \quad \forall i, j \in I, \text{ if } t_i^m < t_j^r, \quad (3.21)
\]

\[
(v_i^r - 1) \cdot t_i^r \leq v_i^r \cdot t_i^r, \quad \forall i, j \in I, \text{ if } t_i^r < t_j^r, \quad (3.22)
\]

\[
v_i^r \cdot t_i^r \leq (v_i^r + 1) \cdot t_i^r, \quad \forall i, j \in I, \text{ if } t_i^r < t_j^r, \quad (3.23)
\]

\[
(v_i^r - 1) \cdot t_i^r \leq v_i^r \cdot t_i^r, \quad \forall i, j \in I, \text{ if } t_i^m < t_j^r, \quad (3.24)
\]

\[
v_i^m \cdot t_i^m \leq (v_i^m + 1) \cdot t_i^r, \quad \forall i, j \in I, \text{ if } t_i^m < t_j^r, \quad (3.25)
\]

Here, \(I \) represents the set of nodes in the cluster, \(t_i^m/t_i^r \) represents the average map/reduce task execution time on node \(i \), and \(n'_m/n'_r \) represents the remaining unas-
signed map/reduce tasks of jobs that are currently running under their map/reduce phases. Additionally, \(v^i_m/v^i_r \) denotes the waves of map/reduce tasks that have to run on node \(i \) before the finish time of current map/reduce phase, \(s^i_m/s^i_r \) represents the optimal slot assignment to map/reduce on node \(i \), and \(S^i \) represents the constraint of total available slot number of node \(i \). The target is to minimize the finish time of the current map phase under a set of constraints: Eq. \((3.17)\) states that the slots assigned to map or reduce tasks on each node should not exceed the pre-defined slot constraint of that particular node; Eq.s \((3.18)-(3.19)\) state that all the remaining tasks of current running jobs need to be assigned across the cluster; Eq.s \((3.20)-(3.21)\) state that the difference between the times each node takes to execute its assigned map tasks should not exceed the execution time of one task (this constraint is decided by the nature of the Hadoop scheduler); Eq.s \((3.22)-(3.23)\), similarly, state that the time each node tasks to execute its assigned reduce tasks should be roughly the same; and Eq.s \((3.24)-(3.25)\) state that the finish time of map and reduce workloads that are dispatched to each node should also be aligned to avoid slot idleness.

However, the time complexity to solve the above problem is extremely high. In order to make decisions for slot configurations instantly when the workloads change, we instead present a new algorithm which solves the problem by heuristically assigning slots for map and reduce tasks on each node in a heterogeneous Hadoop cluster.

3.2.4.2 Algorithm Design: H_TuMM

H_TuMM shares the similar idea of TuMM, i.e., dynamically assign slots to map and reduce tasks to align the process of map and reduce phase based on the collected workload information. The key difference of H_TuMM is to set the slot configurations for each node individually in a heterogeneous cluster, i.e., each of those nodes will have different slot assignment ratio between map and reduce tasks.

To accomplish it, H_TuMM collects the workload information on the entire cluster and on each individual node as well: when a map/reduce task is finished on node \(i \), the workload collector updates (1) the average execution time of map/reduce tasks, i.e., \(t_m/t_r \); and (2) the average execution of map/reduce tasks that ran on node \(i \), i.e., \(\bar{t}^i_m/\bar{t}^i_r \).

Based on the collected workload information, H_TuMM performs slot assignment
for each node as shown in Algorithm 3.7. Once a slot in node \(i \) becomes available, H_TuMM first updates the slot assignments to map tasks \(s^i_m \) and reduce tasks \(s^i_r \) on node \(i \). Such that the ratio of slot assignments (i.e., \(s^i_m / s^i_r \)) is equal to the ratio of remaining map and reduce workloads (i.e., \(\frac{n^i_m}{n^i_r} \)), see line 1-2 in Algorithm 3.7. Therefore, map and reduce phases running on that node are aligned. Similar to Algorithm 3.6, floor function is used to make sure that slots assignments are all integers. If there is one remaining slot, in this case, the free slot will be assigned to a map (resp. reduce) task if map (resp. reduce) tasks run relatively faster on this node compared to the average execution time across the entire cluster in order to improve the efficiency, see line 3-7 in Algorithm 3.7. When the slot assignment on the specific node is determined, the JobTracker can assign tasks based on the new slot configuration and the number of currently running tasks on that node (i.e., \(rt^i_m \) and \(rt^i_r \)), see line 8-11 in Algorithm 3.7.

Algorithm 3.7 Slot Assignment for Node \(i \)

0: **Input:** Average task execution time on node \(i \) and across the cluster, and the remaining task number of current running jobs;

0: **When** Node \(i \) has free slots and ask for new task assignment through the heartbeat message;

1: \(s^i_m \leftarrow \lfloor S^i \times \frac{n^i_m}{n^i_m + n^i_r} \rfloor \);
2: \(s^i_r \leftarrow \lfloor S^i \times \frac{n^i_r}{n^i_m + n^i_r} \rfloor \);
3: if \(s^i_m + s^i_r < S^i \) then
4: if \(\bar{t}^i_m / \bar{t}^i_r > t^i_m / t^i_r \) then
5: \(s^i_r \leftarrow S^i - s^i_m \);
6: else
7: \(s^i_m \leftarrow S^i - s^i_r \);
8: end if
9: end if
10: if \((s^i_m - rt^i_m) > (s^i_r - rt^i_r) \) then
11: assign a map task to node \(i \);
12: else
13: assign a reduce task to node \(i \);
14: end if

3.2.5 Evaluation

3.2.5.1 Experimental Setup and Workloads

Implementation We implemented our new scheme (for homogeneous environment and heterogeneous environment) on top of Hadoop Version 0.20.2. First, we added
two new modules to the JobTracker: the Workload Monitor (WM) that is responsible to collect past workload information such as execution times of completed tasks and to estimate the workloads of currently running map and reduce tasks and the Slot Assigner (SA) which uses the estimated information received from WM to adjust the slot ratio between map and reduce for each slave node. The JobTracker with these additional modules will then assign tasks to a slave node based on the adjusted slot ratio and the current slot status at that particular node. In addition, we modified the TaskTracker as well as the JvmManager running on each slave node to check the number of individual map and reduce tasks running on that node based on the new slot ratio received from the JobTracker. The architecture overview of this new Hadoop framework is shown in Fig. 3.16.

Benchmarks We choose five representative data-analyzing Hadoop benchmarks from Purdue MapReduce Benchmarks Suite [32]:

- **Inverted Index**: input text documents and generate word to document indexing.
- **Histogram Rating**: input the movie rating data and calculate the histogram.
- **Word Count**: take text documents as input and count the occurrence of each word.
- **Classification**: take the movie rate data and classify movies into predefined clusters.
- **Grep**: input text documents and search for a pattern in the files.

In addition, we use different sizes of movie rating data [32] that consists of user ranking information and wiki category links data [33] that includes the information about wiki page categories, as the input to the above five benchmarks. A 10GB movie rating data and a 7GB wiki category data are used as input for experiments in the homogeneous cluster. And experiments under the heterogeneous cluster use a 8GB movie rating data and a 8GB wiki category data as inputs.

We further choose TPC-H [34] queries expressed as Pig programs [35] to validate the performance of H_TuMM under heterogeneous environments. A data generator in TPC-H can be used to create a database with the customized size. In such a database,
there are totally eight tables, i.e., customer, supplier, orders, lineitem, part, partsupp, nation, and region. In our experiments, we generated a database with 4G data in total and selected three queries from the TPC-H benchmark to evaluate the performance of H_TuMM.

- **TPCH-Q15:** This query finds the supplier who contributed the most to the overall revenue for parts shipped during a given quarter of a given year.
- **TPCH-Q16:** This query counts the number of suppliers who can supply parts that satisfy a particular customer’s requirements.
- **TPCH-Q18:** This query finds a list of the top 100 customers who have ever placed large quantity orders. The query lists the customer name, customer key, the order key, date and total price and the quantity for the order.

3.2.5.2 Performance Evaluation in Homogeneous Environment

In this section, we evaluate the performance of TuMM in terms of the makespan of a batch of MapReduce jobs in a homogeneous environment. We launch a Hadoop cluster in the Amazon EC2 environment which consists of 5 m1.xlarge Amazon EC2 instances. Specifically, we have one master node and four slave nodes in the cluster. The number of slots which can be available on each slave node is set as 4 since an m1.xlarge instance at Amazon EC2 has 4 virtual cores.

We first consider the simple workloads which consist of jobs from a single MapReduce benchmark and then validate the robustness of our approach with a mixed workload that is a combination of different MapReduce benchmarks from Purdue MapReduce Benchmarks Suite.

Simple Workloads We here conduct a set of experiments such that in each experiment 3 Hadoop jobs from one of the above benchmarks (see Section 3.2.5.1) are waiting for service. We remark that such a simple workload is often found in real systems as the same Hadoop jobs may be executed repeatedly to process similar or different input data sets. In our experiments, three Hadoop jobs use the same data set as the input. Furthermore, as the comparisons, we evaluate the performance under the static slot ratios for map and reduce. With our setting in the evaluation (i.e., total number of slots per node is 4), we consider three static configuration alternatives, i.e.,
1:3, 2:2 and 3:1, for a Hadoop cluster. We enumerate all these three possible settings for the comparison with our solution.

Fig. 3.18 shows the makespans (i.e., the completion lengths) of a given set when we have different slot configurations. We first observe that the performance varies a lot under three static slot settings. For example, the Inverted Index jobs experience the fastest makespan when the slot ratio is equal to 1:3. In contrast, the Histogram Rating jobs achieve better performance when we assign more slots to their map tasks, e.g., with slot ratio of 3:1. We also observe that TuMM always yields the best performance, i.e., the shortest makespan, for all the five Hadoop benchmarks. We interpret this effect as the result of dynamic slot ratio adjustments enabled by TuMM.

Compared to the slot ratio of 2:2, our approach in average achieves about 20% relative improvement in the makespan. Moreover, such improvement becomes more visible when the workloads of map and reduce tasks become more unbalanced. For example, the makespan of the Inverted Index jobs is reduced by 28% where these jobs have their reduce phases longer than their map phases.

Mixed Workloads In the previous experiments, each workload only contains jobs from the same benchmark. Now, we consider a more complex workload, which mixes jobs from different Hadoop benchmarks. Reducing the makespan for such a mixed workload thus becomes non-trivial. One solution to tackle this problem is to shuffle the execution order of these jobs. For example, the classic Johnson’s algorithm [36] that was proposed for building an optimal two-stage job schedule, could be applied
Figure 3.19: Illustrating task execution times and slot assignments across time under TuMM, where the job execution sequence is (a) generated by Johnson’s algorithm; (b) inverse to the first one; and (c) random. In the plots at the second row, black (resp. gray) areas represent the number of available map (resp. reduce) slots in the cluster.

to process a set of Hadoop jobs and minimize the makespan of a given set as well. However, this algorithm needs to assume a priori knowledge of the exact execution times of each job’s map and reduce phases, which unfortunately limits the adoption of this algorithm in real Hadoop systems. Moreover, for some cases, it may not be feasible to change the execution order of jobs, especially when there exists dependency among jobs or some of them have high priority to be processed first.

To address the above issues, our solution leverages the knowledge of the completed tasks to estimate the execution times of the currently running tasks and reduces the makespan of a set of jobs by dynamically adjusting the slot assignments for map and reduce tasks. As a result, TuMM does not need to change the execution order of jobs and does not need to know the exact task execution times in advance, either.

We generate the mixed workload for our experiments by randomly choosing 10 jobs from 5 different Hadoop benchmarks. In order to investigate the impact of job execution order, we also consider three different execution sequences, including (1) a sequence generated by Johnson’s algorithm which can be considered as the optimal case in terms of the makespan; (2) a sequence that is inverse to the first one and can be considered as the worst case; and (3) a sequence that is random. Similarly, we evaluate the performance (i.e., makespan) under TuMM and three static slot configurations.

Fig. 3.20 shows the makespans of the 10 jobs in the mixed workload. We first observe that among three static settings, the slot ratio of 2:2 always achieves the
Figure 3.20: Makespans of a mixed workload under TuMM and three static slot configurations. Three execution orders are also considered: (a) a sequence follows Johnson’s algorithm, (b) a sequence with reversed order of Johnson’s algorithm, and (c) a random sequence.

best performance under three different execution orders. This is because the overall workloads of map tasks and reduce tasks from the 10 jobs are well balanced. We also notice that with a fixed number of slots per node, different job execution orders could yield different makespans. While our solution always achieves the best performance, the impact of execution sequence on our solution’s performance also becomes less visible. This means that no matter what the execution order is, TuMM can always serve the jobs with the shortest makespans. That is, our approach allows to improve the performance in terms of makespan without changing the execution order of jobs.

To better understand how TuMM uses the slot ratio as a tunable knob to improve the makespan, we further plot the task execution times for each job as well as the transient slot assignments in Fig. 3.19, where the plots in the first row depict the running period of each task from the 10 jobs while the plots in the second row illustrate how the slot assignments change across time. As shown in Fig. 3.19, TuMM dynamically adjusts the slot assignments to map and reduce tasks based on the estimated workload information. For example, in the first 1200 seconds of Fig. 3.19-(2), TuMM attempts to assign more slots to reduce tasks. Then, in the later 1200 seconds, TuMM turns to allow more available map slots on each node. This is because the Johnson’s algorithm shuffles order of 10 jobs such that all the reduce intensive jobs such as Inverted Index and Grep run before the map intensive jobs, e.g., Histogram Rating and Classification. The only exception is the first 100s where most of the slots are assigned to map tasks even though the running job actually has reduce intensive workloads. That is because TuMM does not consider the reduce workloads of this job in the first 100 seconds until its map tasks are finished. Fig. 3.19-(1) shows the corresponding task execution times under TuMM. It is obvious that each job’s reduce
phase successfully overlaps with the map phase of the following job and the makespan of 10 jobs is then shortened compared to the static settings.

In summary, TuMM achieves great improvements in makespan under both simple workloads and mixed workloads. By leveraging the history information, our solution accurately captures the changes in map and reduce workloads and adapts to such changes by adjusting the slot assignments for these two types of tasks. Furthermore, different job execution orders do not affect TuMM’s performance. That is, our solution can still reduce the makespan without changing the execution order of a given set of jobs.

3.2.5.3 Performance Evaluation in Heterogeneous Environment

In this section, we evaluate the performance of H_{TuMM} in the heterogeneous environments. The mixed workloads introduced in previous section and the TPC-H benchmarks are used to validate the effectiveness and robustness of our scheme.

We build up two heterogeneous Hadoop clusters in the Amazon EC2 environment, i.e., Heter1 and Heter2. The detailed cluster configurations of these two heterogeneous cluster are shown in Table 3.11. Specifically, each cluster has one m1.xlarge type master node and 9 slave nodes. There are three different groups of slave nodes in each cluster, and slots in different groups have different physical resource capacities. We list the approximate number of compute units and memory sizes that shared by one slot in different node group in Table 3.11. It is clear that slots have equally scaled cpu and memory capacities in different node groups of Heter1, and skewed cpu and memory capacity ratios in different node groups of Heter2.

Table 3.11: Cluster configuration of two heterogeneous clusters, i.e., Heter1 and Heter2.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Instance Type</th>
<th>Number of Slaves</th>
<th>Slot Number Per Node</th>
<th>Avg. Capacity Per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Map</td>
<td>Reduce</td>
</tr>
<tr>
<td>Heter1</td>
<td>m1.xlarge</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>m1.xlarge</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>m1.large</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Heter2</td>
<td>m1.xlarge</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>c1.xlarge</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>m2.xlarge</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mixed Workloads We first conduct experiments using the mixed workload as
Figure 3.21: Task execution times of a batch of mixed benchmarks under (a) FIFO and (b) HₜuMM. The plots in the left (resp. right) column show the results from Heter1 (resp. Heter2) cluster. There are in total 30 (resp. 36) slots across Heter1 (resp. Heter2) cluster, i.e., there are at most 30 (resp. 36) running tasks in Heter1 (resp. Heter2) cluster at any given time.

Table 3.12: Maximum and minimum task execution times of each job across Heter1 cluster.

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Map Tasks</th>
<th>Reduce Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum (sec)</td>
<td>Maximum (sec)</td>
</tr>
<tr>
<td>Classification</td>
<td>6.5</td>
<td>24.1</td>
</tr>
<tr>
<td>Histogram Rating</td>
<td>8.5</td>
<td>24.8</td>
</tr>
<tr>
<td>Inverted Index</td>
<td>5.1</td>
<td>17.4</td>
</tr>
<tr>
<td>Word Count</td>
<td>11.5</td>
<td>31.4</td>
</tr>
<tr>
<td>Grep</td>
<td>6.7</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>Minimum (sec)</td>
<td>Maximum (sec)</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>9.7</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>16.5</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>29.5</td>
</tr>
</tbody>
</table>

described in Section 3.2.5.2, where the size of input data is 8GB and the data block size is set to 64MB such that each job has 128 map tasks. Additionally, the number of reduce tasks from each job is set to be 150 and 80 for the Inverted Index benchmark and the remaining benchmarks, respectively.

In order to investigate the impact of heterogeneous environments on Hadoop performance, we measured the maximum and minimum task execution times for each job across different slave nodes in Heter1 cluster. As shown in Table 3.12 each job’s task execution times are no longer uniform, for example, the slowest map task(s) of a Classification job could almost run four times longer than the fastest one(s). We interpret this effect by observing the variance of resource capacity among the slots on different slave nodes.

Figure 3.21 illustrates the task execution details (i.e., the running period of each
task) of a batch of mixed benchmarks under both FIFO and H_TuMM scheduling policies. The plots in the left (resp. right) column show the results from Heter1 (resp. Heter2) cluster. We observe that in both heterogenous clusters, our new H_TuMM policy dynamically changes the slot assignment to map and reduce tasks over time while keeping the number of total running tasks the same at any given time. Through tuning the slot assignments, H_TuMM successfully aligns each job’s reduce phase with the map phase of the following job and thus avoids the waste of slot resources. As a result, the makespan of 10 Hadoop jobs in the mixed workload becomes shorter under H_TuMM than under FIFO.

Figure 3.22 further depicts the number of map tasks that are dispatched by H_TuMM to each node over time in Heter1 cluster. Clearly, our H_TuMM dynamically sets the slot configurations for each node, such that the number of map tasks running on each node varies over time and each node is assigned with different number of map tasks (slots) at each moment.

![Figure 3.22: Number of map tasks running on each node in Heter1 cluster under H_TuMM policy.](image)

TPC-H Workloads We now turn to the experiments which run the TPC-H benchmark in the heterogeneous clusters. As described in Section 3.2.5.1, we chose 3 different queries from TPC-H query set. Each of the three queries consists of 5 sub queries. A dependency chain exists between the sub queries from the same query, i.e., each sub query could start only after its precedent sub query completes. It follows that the 5 sub queries from the same query are indeed submitted and executed sequentially in the predefined order. Furthermore, the input data sizes of different sub queries vary even in the same query. Therefore, each sub query has different map task numbers.
For example, in this set of experiments, the first sub query of all the three queries has the largest input data size and thus most map tasks are clustered in the first few sub queries, while the following sub queries have relatively small amount of map tasks.

We submit the 3 queries (i.e., TPCH-Q15, TPCH-Q16 and TPCH-Q18) to the cluster at the same time, such that the sub queries of each query could interleave with each other. The makespans of these three TPC-H queries in two heterogeneous clusters (i.e., Heter1 and Heter2) are shown in Table 3.13 and the execution details of these queries are further plotted in Figure 3.23. We observe that by dynamically adjusting slot assignments on each node, H_TuMM improves the performance (i.e., reducing the makespan) of all the three TPC-H queries when compared to FIFO. Such performance improvement can be consistently observed in both heterogeneous clusters. Figure 3.23 further illustrates that the map and reduce phases are well aligned under the H_TuMM policy.

Table 3.13: Makespans of TPC-H queries under FIFO and H_TuMM in two heterogeneous clusters. The numbers in the parentheses are the relative improvements against FIFO.
Figure 3.23: Task execution times of three TPC-H queries under (a) FIFO and (b) H_TuMM. The plots in the left (resp. right) column show the results from Heter1 (resp. Heter2) cluster. Different colors represent different sub queries.
3.3 Related Work

Scheduling in Hadoop system has already received lots of attention. An early well-known work of Matei Zaharia et al. \cite{37} proposed Fair scheduler which has been widely adopted by Hadoop users since it is suitable for shared clusters. However, its objective is not to optimize the system performance.

Scheduling performance is of great importance in Hadoop system and draws lots of research attention. In \cite{38}, a delay scheduler was proposed to improve performance of Fair scheduler by increasing data locality. It simply delays a task assignment for a while when there is no local data available. This improvement is at task level, and can be combined with our proposed works. Quincy scheduler \cite{39} considered similar direction and found a fair assignment while considering locality by formulating and solving a minimum flow network problem. However, it is limited due to its high computation complexity. In \cite{40}, Sandholm et. al. considered the profit of the service provider and proposed a scheduler that splits slots to users according to the bids they pay instead of fair share. The efficiency of scheduler is not considered in their work. Joel Wolf et. al. proposed a slot allocation scheduler called FLEX \cite{41} that could optimize towards a given scheduling metric, e.g., average response time, makespan, etc., by sorting jobs with generic schemes before allocating slots. Verma et al. \cite{42} introduced a heuristic to minimize the makespan of a set of independent MapReduce jobs by applying the classic Johnson’s algorithm.

Job size based scheduling are also well studied in Hadoop system in recent years. Mario Pastorelli et. al. \cite{43} proposed HFSP, which closely assembles the Shortest Remaining Processing Time (SRPT) algorithm with aging in Hadoop system to improve efficiency. Deadline or SLA aware scheduling is also well studied in Hadoop context. An early work of Kc and Anyanwu \cite{44} address the problem of scheduling jobs to meet user-provided deadlines, but assume job runtime to be an input to the scheduler. Another deadline based scheduler was proposed in \cite{45}, which utilizes the earliest deadline first (EDF) policy to sort jobs and adopts the Lagrange optimization method to find out the minimum map and reduce slots number requirements of jobs to meet their deadline. This solution requires a detailed profile for each job to provide its execution times of map and reduce tasks. Jorda Polo et al. \cite{29} estimated the
task execution time of a MapReduce job from the average execution time of already finished tasks of that job, and calculated the slots number a job needs based on its deadline and estimated task execution time. We partly adopt the method to help estimate the job size of each user in our proposed LsPS scheduler. Different deadline and locality aware scheduling algorithms were evaluated with empirical analysis for Hadoop system in [46].

Some other works focus on theoretical understanding of scheduling problem in Hadoop system and give approximate scheduling algorithms [26][47]. Chang et al. [47] proposed a 2-approximate scheduling algorithm. However, their assumption that there are no precedence relationships between different tasks belonging to a given job is not true in real-world Hadoop system. Benjamin et al. [26] formalized job scheduling problem in MapReduce system as a generalization of the two-stage flexible flow-shop problem and gave the off-line and on-line version of approximate algorithm. Their work assumes that the execution time of tasks are known.

Furthermore, the heterogeneousness of system and jobs’ resource requirements are considered in many research works to improve the scheduling. M. Zaharia et al. [48] indicated that the Hadoop speculative execution will lead to poor performance in heterogeneous Hadoop environments. They thus proposed LATE scheduler which stops unnecessary speculative executions. [49] also focused on improving speculative task execution by efficiently determine which tasks should be picked for duplicate execution. [21] considered the difference of resources requirements of Hadoop jobs and proposed a dominant resource fairness policy to fairly assign resources instead of slots. This policy is implemented in the next generation Hadoop (YARN) system. Tian et al. [50] propose a mechanism to concurrently schedule where IO-bound and CPU-bound jobs, to avoid conflicts on single type of resource. The design of SkewTune [51] greatly mitigates the issue of data skewness in Hadoop system with a plug-in module to improve the job running efficiency. In [52], the authors proposed Tarazu, which adaptively allows task stealing from slow nodes, as well as re-balancing loads of reduce tasks running on slow and fast nodes.
3.4 Summary

In enterprise Hadoop MapReduce platforms, it is common practice to share the core MapReduce cluster among multiple tenants with different kind of applications. In general, these applications can be characterized into ad-hoc on-line queries and off-line batch jobs, and have different prime performance concerns. For the ad-hoc query jobs, the average response time is important for user experience while makespan is more important for off-line jobs. In the proposed work, we first design an adaptive scheduling technique that captures the present job size patterns of users and leverages this knowledge to improve the system performance in terms of average job response time. Performance of the proposed scheduler is evaluated in both simulators and Amazon EC2 clusters under diverse workloads. We further propose a slot resource management scheme to enable dynamic slot configuration in Hadoop MapReduce cluster. The main objective is to improve resource utilization and reduce the makespan of a batch of jobs. To meet this goal, the presented scheme introduces two main components: Workload Monitor periodically tracks the execution information of recently completed tasks and estimates the present workloads of map and reduce tasks; Slot Assigner dynamically allocates the slots to map and reduce tasks by leveraging the estimated workload information. The scheme is implemented upon Hadoop v0.20 and evaluated with representative MapReduce benchmarks and TPC-H query sets in both homogeneous and heterogeneous EC2 clusters.
Chapter 4

Resource Management for Hadoop YARN

With the rapid growth of the demand on large-scale data processing and analysis, the original Hadoop MapReduce system has met several bottlenecks. First, the centralize JobTracker becomes performance bottleneck when cluster expands to thousands of machines. Secondly, the coarse-grained resource management based on slot concept is not suitable for higher resource utilization requirements. Moreover, the MapReduce framework, although serves as a general purpose data processing scheme, is not efficient for streaming data processing and iterative data processing. Therefore, Hadoop has recently evolved into its second generation, Hadoop YARN - yet another resource negotiator. As discussed in Section 2.3, Hadoop YARN separates the two major functionalities of the JobTracker, i.e., resource management and job scheduling / job monitoring and coordination, in the first generation Hadoop. A global ResourceManager(RM) is in charge of cluster resource management and job scheduling, and a per-application ApplicationMaster(AM) is required for negotiate resources for tasks in application and monitor task executions. By splitting the job coordination from RM, YARN system is more horizontally scalable than the first generation Hadoop. Furthermore, since RM becomes a pure scheduler, YARN system supports different frameworks other than MapReduce, such that users can co-deploy multiple frameworks on the same cluster and choose the most suitable framework for different applications. However, the fine-grained resource allocation in YARN system and the
co-deployment of different frameworks introduce new challenges to efficient resource management. In this section, we focus on developing new scheduler that improves efficiency of MapReduce jobs in YARN platform and new resource management scheme that improves resource utilization and task throughput of YARN cluster.
4.1 Scheduling for YARN MapReduce

Hadoop YARN system abandons the coarse-grained “slot” configuration and evolves into the fine-grained resource management. The widely adopted scheduling policies in Hadoop system, e.g., FIFO, Fair, Capacity, however, still keep the same logic as in the first generation Hadoop system. As described in Section 2.4, the FIFO policy still sorts waiting jobs according to their submission time for scheduling, the Fair and Capacity scheduler assign shares of cluster resources, in terms of memory instead of slots, to jobs in different queues. Dominant Resource Fairness (DRF) scheduler is a variant of Fair that introduced to handle multi-resource allocation, e.g., cpu and memory, in YARN by assigning all jobs to get on average an equal share on their dominant resource requirements. We find that these commonly adopted schedulers are still not performing well for scheduling a batch of MapReduce jobs efficiently under the fine-grained resource sharing platform. For example, while it is obviously more efficient to run cpu intensive jobs and memory intensive jobs simultaneously, the FIFO scheduler forces jobs to run sequentially which leads to unnecessary resource idleness. Moreover, current resource sharing based schedulers omit considering the dependency between MapReduce tasks which actually has a critical impact on the efficiency especially when there are multiple jobs running concurrently in cluster.

Therefore, in this work, we present a new Hadoop YARN scheduling algorithm, named HaSTE [20], which aims at efficiently utilizing cluster resources for scheduling map/reduce tasks in Hadoop YARN and improving the makespan of MapReduce jobs. HaSTE meets these goals by leveraging the requested resources, resource capacities, and the dependency between tasks. Specifically, our solution dynamically schedules tasks for execution when resources become available based on each task’s fitness and urgency. Fitness essentially refers to the gap between the resource demand of tasks and the residual resource capacity of nodes. This metric has been commonly considered in other resource allocation problems in the literatures. The second metric, urgency, is designed to quantify the “importance” of a task in the entire process. It allows us to prioritize all the tasks from different jobs and more importantly, catches the dependency between tasks. An aggregation function is used to combines the fitness and urgency to compare all candidate tasks for efficient schedule.
4.1.1 Problem Formulation

We consider that a set of n jobs $\{J_1, J_2, \ldots, J_n\}$ are submitted to a Hadoop YARN cluster consisting of m servers, $\{S_1, S_2, \ldots, S_m\}$. Each job consists of map tasks and reduce tasks. We consider all the tasks in n jobs as a set T and assign each task a unique index number, i.e., t_i represents the i-th task in the system. Each job J_i is then represented by a set of tasks. We further define two subsets MT and RT to represent all the map tasks and reduce tasks, respectively, i.e., $T = MT \cup RT$. $MT \cap J_i$ ($RT \cap J_i$) represents all the map (reduce) tasks of job J_i. In addition, assume that k types of computing resources are considered in the system, indicated by r_1, r_2, \ldots, r_k. Note that in the current YARN system, only two resources are included, memory and cpu. Here we use k to define the problem with a general setting so that potential extensions can involve other types of resources, e.g., network bandwidth and disk I/O.

In this paper, r_1 and r_2 represent memory and cpu resources, respectively. We use a two-dimensional matrix C to represent the resource capacity in the cluster. $C[i, j]$ indicates the amount of available resource r_j at server S_i, where $i \in [1, m]$ and $j \in [1, k]$. This matrix C is available to the scheduler after the cluster is launched and the values in C are updated during the execution of jobs upon each heartbeat message received from NodeManagers.

In YARN, each task can request for user-specified resources. All map/reduce tasks in a job share the same resource requirement. For a task $t_i \in T$, $R[i, j]$ is defined to record the amount of resource r_j requested by t_i, where $R[p, j] = R[q, j]$ if t_p and t_q are the same type of tasks (either both map tasks or both reduce tasks) from the same job. The Hadoop scheduler can assign a task t_i to a work node S_j for execution as long as $\forall p \in [1, k], R[i, p] \leq C[j, p]$. In this paper, given C and R, our goal is to design an efficient scheduler that can help the cluster finish all the MapReduce jobs with the minimum time (i.e., minimize the makespan). More specifically, let st_i be the starting time of task $t_i \in T$, τ_i be the execution time of t_i, and x_{ij} indicate the association between t_i and S_j, i.e., x_{ij} is 1 if task t_i is assigned to worker node S_j.
Then our scheduling problem is to derive \(st_i \) and \(x_{ij} \) in order to minimize:

\[
\text{minimize: } \max\{st_i + \tau_i\}, \forall i \in T
\]

subject to:

\[
\sum_{j \in [1,m]} x_{ij} = 1, \forall t_i \in T; \tag{4.1}
\]

\[
\sum_{t_i \in A(\theta)} x_{ij}R[i,p] \leq C[j,p], j \in [1,m], p \in [1,k], \theta > 0; \tag{4.2}
\]

\[
x_{ij} \in \{0,1\}, st_i \geq 0, \forall i, j.
\]

Here time is measured as a discrete value which is multiple of the time unit. \(\theta \) represents a particular time point, and \(A(\theta) \) is defined as the set of active tasks at time \(\theta \), \(A(\theta) = \{t_i \in T | st_i \leq \theta \leq st_i + \tau_i\} \). Therefore, constraint (4.1) specifies that each task could be assigned to exactly one NodeManager, and constraint (4.2) requires that the resources consumed by all active tasks at a particular worker node \(S_j \) cannot exceed its resource capacity.

Assume \(\tau_i \) is available and each map/reduce task is independent, our scheduling problem is equivalent to general resource constrained scheduling problem which has been proved to be NP-complete [53]. Many heuristics have been proposed for solving the problem. Most of them, however, are not practical to be directly implemented in the Hadoop YARN system. The main issue is that the processing time \(\tau_i \) of each task \(t_i \) is required to determine the schedule in the conventional solutions. In practice, the value of \(\tau_i \) cannot be known as a prior before its execution in the system. Profiling or other run time estimation techniques may be applied to roughly estimate the execution time of map tasks [29,45]. However, it is extremely hard, if not impossible, to predict the execution times of reduce tasks in a cluster where multiple jobs could be running concurrently. In Hadoop YARN, the reduce tasks of a MapReduce job consist of two main stages, shuffle and reduce. In the shuffle stage, the output of each map task of the job is transferred to the worker nodes which host the reduce tasks, while computation in the reduce stage starts when all the input data are ready. Therefore, the execution time of a reduce task are dependent on several map-related factors, such as the execution times of all map tasks and the size of the intermediate output data. In this paper, we aim to develop a more practical heuristic that does not require any prior knowledge of task execution times.
4.1.2 Sketch of HaSTE Design

We design a scheduler that consists of two components, initial task assignment and real-time task assignment. First, initial task assignment is executed when the cluster is just started and all ApplicationMasters have submitted the resource requests for their MapReduce tasks to the scheduler. The goal of initial task assignment is to assign the first batch of tasks for execution while the rest of tasks remain pending in the system queue. Specifically, initial task assignment algorithm needs to select a subset of pending tasks and select a hosting work node for each of them for execution. On the other hand, real-time task assignment is launched during the execution of all the jobs when tasks are finished and the corresponding resources are released. When new resources become available at a worker node, the NodeManager will notify the scheduler through heartbeat messages. Then the scheduler will execute real-time task assignment to select one or more tasks from the pending queue and assign them to the worker node with new resources available. Compared to initial task assignment, real-time task assignment is triggered by heartbeat messages with resource capacity update and only dispatches tasks to the hosting work node, i.e., the sender of the heartbeat message.

In our design, without prior knowledge of the execution time, we exploit the greedy strategy to develop both initial task assignment and real-time task assignment algorithms. Initial task assignment is formulated as a variant of the knapsack problem. We then use dynamic programming to derive the best task assignment in the beginning. Real-time task assignment is a more complex problem involving the progress of all active tasks and the dependency between tasks. We develop an algorithm that considers fitness and urgency of tasks for determining the appropriate task to execute on-the-fly.

4.1.3 Initial Task Assignment

The objective of this component is to select a set of tasks to start. Since the execution of each task is unknown, it is impossible to yield the optimal solution at this point. Therefore, we adopt the greedy strategy and simplify our objective to be maximizing the resource utilization after initial task assignment. If there is only one type
of resource, then this problem is equivalent to the typical knapsack problem. Consider each worker node as a knapsack, the resource capacity refers to the knapsack capacity. Correspondingly, each task can be considered as an item and the requested resource amount is both the weight and the value of the item. The optimal solution to the converted knapsack problem will yield the maximized resource utilization in our problem setting. However, the Hadoop YARN system defines two resources (recall that we consider a general setting of \(k \) resources) in which case our problem cannot directly reduce to the knapsack problem. We thus need a quantitative means to compare different types of resources, e.g., Is utilizing 100% cpu and 90% memory better than utilizing 90% cpu and 100% memory? We then assume that the cluster specifies a weight \(w_i \) for each resource \(r_i \). The initial task assignment problem can be formulated as follows:

\[
\text{maximize: } \sum_{t_i \in T} \left(\sum_{j \in [1,m]} x_{ij} \cdot \sum_{p \in [1,k]} w_p \cdot R[i,p] \right) \\
\text{s.t. } \sum_{j \in [1,m]} x_{ij} \leq 1, \forall t_i \in T; \\
\sum_{t_i \in T} x_{ij} \cdot R[i,p] \leq C[j,p], \forall j \in [1,m], p \in [1,k].
\]

We design an algorithm using dynamic programming to solve the problem. The details are illustrated in the following Algorithm 4.1. The main algorithm is simply a loop that assigns tasks to each of the \(m \) servers (lines 1–2). The core algorithm is implemented in the procedure \texttt{AssignTask}(j,T), i.e., select tasks from \(T \) to assign to server \(S_j \). We design a dynamic programming algorithm with two 2-dimensional matrices \(M \) and \(L \), where \(M[a,b] \) is the maximum value of our objective function with a capacity \(<a,b> \) and \(L \) records the list of tasks that yield this optimal solution. The main loops fill all the elements in \(M \) and \(L \) (lines 4–17). Eventually, the algorithm finds the optimal solution (line 18) and assigns the list of tasks to \(S_j \) (lines 19–23). When filling an element in the matrices (lines 6–17), we enumerate all candidate tasks and based on the previously filled elements, we check: (1) if the resource capacity is sufficient to serve the task (lines 9-12); and (2) if the resulting value of the objective function is better than the current optimal value (lines 13-16). If both conditions are satisfied, we update the matrices \(M \) and \(L \) (line 16-17).
Algorithm 4.1: Initial Task Assignment

Data: C, T, \mathcal{R}

Result: x

1. for $j = 1$ to m do
 2. AssignTask(j, T);

Procedure AssignTask(j, T)

4. for $a = 1$ to $C[j, 1]$ do
 5. for $b = 1$ to $C[j, 2]$ do
 6. for each $t_i \in T$ do
 7. $L = L[a - \mathcal{R}[i, 1], b - \mathcal{R}[i, 2]]$;
 8. if $t_i \in L$ then Continue;
 9. if $\sum_{t_p \in L} \mathcal{R}[p, 1] + \mathcal{R}[i, 1] > a$ then
 10. Continue;
 11. if $\sum_{t_p \in L} \mathcal{R}[p, 2] + \mathcal{R}[i, 2] > b$ then
 12. Continue;
 13. $V = w_1 \cdot \mathcal{R}[i, 1] + w_2 \cdot \mathcal{R}[i, 2]$;
 14. $tmp = \mathcal{M}[a - \mathcal{R}[i, 1], b - \mathcal{R}[i, 2]] + V$;
 15. if $\mathcal{M}[a, b] < tmp$ then
 16. $\mathcal{M}[a, b] = tmp$; $tmpL = L + \{t_i\}$;
 17. $L[a, b] = tmpL$;
 18. $(x, y) = \arg\max_{a,b} \mathcal{M}[a, b]$;
 19. $L = \mathcal{L}[a, b]$;
 20. $T \leftarrow T - L$;
 21. for each $t_i \in L$ do
 22. $x_{ij} = 1$;
 23. return;

4.1.4 Real-time Task Assignment

Real-time task assignment is the core component in our design of HaSTE as it is repeatedly conducted during the execution of all the jobs. The main goal is to select a set of tasks for being served on a worker node which has the newly released resources. Given the “snapshot” information only, it is difficult to make the best decision for the global optimization, i.e., minimizing the makespan, especially considering the complexity of a MapReduce process. In this paper, we develop a novel algorithm that considers two metrics of each task, namely fitness and urgency. Our definition of fitness represents the resource availability in the system and resource demand from each task, while the urgency metric characterizes the dependency between tasks and the impact of each task’s progress. In the rest of this subsection, we first describe the calculation of each metric and then present the overall algorithm of real-time task assignment.
4.1.4.1 Fitness

Using fitness in our design is motivated by the greedy solution to the classic bin packing problem. We first note that some special cases of our problem are equivalent to the classic bin packing problem. Assume that all submitted jobs have only one type of tasks and all tasks are independent to each other. Also, assume that the execution times of all tasks are the same, say \(u \) time units. Our scheduling problem thus becomes packing tasks into the system for each time unit. The total resource capacity is considered as the bin size and the makespan is actually the number of bins. Thus, finding the optimal job scheduling in this setting is equivalent to minimizing the number of bins in the bin packing problem. The classic bin packing considers only one type of resource and has been proven to be NP-hard. A greedy heuristic, named First Fit Decreasing (FFD), is widely adopted to solve the problem because it is effective in practice and yields a \(\frac{14}{9} OPT + 1 \) worst case performance \([54] \). The main idea of FFD is to sort tasks in a descending order of the resource requirements and keep allocating the first fitted tasks in the sorted list to the bins. Figure 4.1 illustrates how FFD can improve the makespan and resource utilization when scheduling two jobs with different memory requirements.

![Figure 4.1: Scheduling two jobs under (a) FIFO, (b) Fair and (c) FFD, where a worker node with 4G memory capacity is processing two jobs each with 4 tasks. Job 1 arrives first and each of its task requests 1G memory (blue blocks), while each task of Job 2 requests 3G memory, see yellow blocks. Assume that the execution time of each task is one time unit. Thus, the FFD scheduler uses 4 time units to finish both jobs while FIFO and Fair need 5 time units.](image)

In fact, with two types of resources (memory and cpu) supported in Hadoop YARN, the simplified scheduling problem is equivalent to the vector bin packing problem in the literature. Different variants of FFD have been studied for solving the vector bin packing problem \([55] \). The FFD-DotProduct (dubbed as FFD-DP) method has been shown to be superior under various evaluation sets. Therefore, we adopt the
FFD-DP method to schedule map and reduce tasks with two resource requirements. Specifically, we define fitness as:

\[F_{ij} = \sum_{p \in [1,k]} R[i,p] \cdot C[j,p] \cdot w_p. \]

(4.3)

Real-time task assignment uses Eq.(4.3) to calculate a fitness score for each pending task \(t_i \) when selecting tasks to be executed on the worker node \(S_j \). Recall that for each resource \(r_p \), \(R[i,p] \) is the requested amount from \(t_i \), \(C[j,p] \) is the resource capacity at \(S_j \), and \(w_p \) is the weight of the resource. Intuitively, we prefer to select the task with the highest fitness score. Therefore, real-time task assignment can sort all the pending tasks in the descending order of their fitness scores, and then assign the first task to the worker node \(S_j \). After updating \(S_j \)'s resource capacity, real-time task assignment will repeat this selection process to assign more tasks until there is no sufficient resource on \(S_j \) to serve any pending tasks. The FFD-DP algorithm works well with multiple resource types since it is aware of the skewness of resource requirements. For example, assume that there are two types of tasks with different resource requirements: one requests \(<1 \text{ GB}, 3 \text{ cores}>\) and the other requests \(<3 \text{ GB}, 1 \text{ core}>\); and real-time task assignment tries to assign tasks to a worker node with residual capacity of \(<10 \text{ GB}, 6 \text{ cores}>\). The FFD-DP algorithm will choose 3 tasks of type II and 1 task of type I, which results in 100% resource utilization. The following table shows the fitness scores of these two types of tasks at each iteration of the algorithm.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>(<10,6>)</th>
<th>(<7,5>)</th>
<th>(<4,4>)</th>
<th>(<3,1>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (<1 \text{ GB}, 3 \text{ cores}>)</td>
<td>28</td>
<td>22</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Type II (<3 \text{ GB}, 1 \text{ core}>)</td>
<td>36</td>
<td>26</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

4.1.4.2 Urgency

Scheduling in Hadoop YARN is more complex than the regular job scheduling problem due to the dependency between map and reduce tasks. Considering fitness alone may not always lead to good performance in practice. Although there has been previous work [56,59] on job scheduling under the dependency constraints, their solutions cannot be directly applied to our problem because the dependency between map and reduce tasks is quite different from the dependency defined in these works. In traditional scheduling problems, a task \(t_j \) is said to be dependent on task \(t_i \), i.e.,
$t_i < t_j$, if t_j cannot start before t_i has been completed. However, in the MapReduce framework, reduce tasks, although depend on the outputs of all map tasks, can start before the completion of all map tasks for retrieving the intermediate data from the completed map tasks. This early start is configured by a system parameter “slowstart” and renders a better performance in practice.

Consequently, the execution of the reduce tasks are highly dependent on the execution of map tasks. Indeed, such dependency relationship has been known by ApplicationMasters when making reduce task requirements. A new metric, named “Ideal Reduce Memory Limit”, is calculated as the product of the progress of map tasks and the total “available” memory for the corresponding job. The resource limit of reduce tasks increases gradually with the progress of map tasks. An ApplicationMaster sends new reduce task requests to the ResourceManager only when the present resource limit is enough for running more reduce tasks.

However, we observed that the current schedulers in Hadoop YARN, which are designed for more general task scheduling, fail to recognize the impact of dependency in MapReduce jobs and may lead to ineffective resource assignments and poor performance as well. For example, a job that has already launched many reduce tasks may not be able to have all its map tasks to be executed right away due to resource contention among other jobs; the launched reduce tasks will keep occupying the resources when waiting for the completion of all maps tasks of the same job. This incurs low utilization of resources that are allocated to those reduce tasks.

To address the above issue, HaSTE uses a new metric, named “urgency”, to capture the performance impact caused by the dependency between map and reduce tasks of MapReduce jobs. Specifically, we have the following main scheduling rules associated with the urgency.

R1. A job with more progress in its map phase, will be more urgent to schedule its map tasks. This rule can boost the completion of the entire map phase and further reduce the execution time of the launched reduce tasks.

R2. A job with more resources allocated to its running reduce tasks will be more urgent to schedule its map tasks in order to avoid low resource utilization when its reduce tasks are waiting for the completion of map tasks.

R3. Reduce tasks should be more urgent than map tasks of the same job if the ratio
between resources occupied by currently running reduces and all currently running tasks is lower than the progress of map phase, vice versa.

In summary, R1 and R2 are used to compare the urgency between two different jobs while the urgency of map/reduce tasks from the same job is compared by R3. We have the following equations to calculate the urgency score U^m_i (U^r_i) for each map (reduce) task from job i:

$$U^m_i = \frac{A^m_i}{T_m^i} \cdot (A^m_i \cdot R^m_i + A^{am}_i \cdot R^{am}_i), \quad (4.4)$$

$$U^r_i = U^m_i \cdot \frac{A^m_i}{T_m^i} \cdot \frac{O^m_i \cdot R^m_i + O^r_i \cdot R^r_i}{O^r_i \cdot R^r_i}. \quad (4.5)$$

Here $A^m_i/A^r_i/A^{am}_i$ represents the number of map/reduce/ApplicationMaster tasks that have been assigned for job i, and $R^m_i/R^r_i/R^{am}_i$ represents the resource requirement of a single map/reduce/ApplicationMaster task, i.e., the weighted summation of memory and cpu requirements. T^m_i represents the total number of map tasks of job i. O^m_i/O^r_i represents the number of running map/reduce tasks of job i that are currently occupying system resources. All these metrics are accessible to the scheduler in the current YARN system. Therefore, we implemented our new scheduler as a pluggable component to YARN without any needs of changing other components.

4.1.4.3 On-line Scheduler

Now, we turn to summarize the design of HaSTE by integrating the two new metrics, i.e., fitness and urgency, into the scheduling decision.

Once a node update message is received from a NodeManager, the scheduler first creates a list of all resource requests that can fit the remaining resource capacity of that node. Meanwhile, the scheduler calculates the fitness and urgency scores of those chosen resource requests, and obtains the preference score for each request by summing up the normalized fitness and urgency scores, see Eq.(4.6).

$$P_i = \frac{F_i - F_{\min}}{F_{\max} - F_{\min}} + \frac{U_i - U_{\min}}{U_{\max} - U_{\min}}, \quad (4.6)$$

where F_{\max} and F_{\min} (resp. U_{\max} and U_{\min}) record the maximum and minimum fitness (resp. urgency) scores among these requests.

Such preference scores are then used to sort all resource requests in the list. The resource request with the highest score will be chosen for being served. Note that
each resource request can actually represent a set of task requests since tasks with the same type and from the same job usually have the same resource requirements. The scheduler will then choose a task that has the best locality (i.e., node local or rack local) and assign that task to the NodeManager. One special type of task request is the request for ApplicationMaster. Such requests always have the highest preference score in HaSTE due to its special functionality, i.e. submitting resource requirements and coordinating the execution of a job’s tasks.

Finally, we remark that the complexity of our scheduling algorithm is $O(n \log n)$ which is determined by the sorting process. Here n is the number of running jobs rather than the number of running tasks, since all tasks with the same type and from the same job could be represented in a single resource request and then have the same preference score. Therefore, HaSTE is a light-weighted and practical scheduler for the Hadoop YARN system.

4.1.5 Evaluation

In this section, we evaluate the performance of HaSTE by conducting experiments in a Hadoop YARN cluster. We implemented both HaSTE and FFD-DotProduct (abbrev. FFD-DP) schedulers in Hadoop YARN version 2.2.0 and compared HaSTE with three built-in schedulers (i.e., FIFO, Fair and DRF) and FFD-DP. The performance metrics considered in the evaluation include makespans of a batch of MapReduce jobs and resource utilizations of the Hadoop YARN cluster.

4.1.5.1 Resource Requests of MapReduce Jobs

In our experiments, we consider different resource requirements such that a job can be either memory intensive or cpu intensive. The resource requirements of map and reduce tasks of a MapReduce job can be specified by the user when that job is submitted. The user should set the resource requirements equal to or slightly more than the actual resource demands. Otherwise, a task will be killed if it uses more resources than its resource demand\footnote{We note that the virtual cpu cores are not physically isolated for each task in the YARN system. The number of virtual cpu cores requested for a task determines the priority of that task when competing for cpu times. Therefore, an inappropriate low request of virtual cpu cores is also not desired because it may lead to insufficient cpu times that a task can get and dramatically delay the} Such a mechanism adopted in the YARN system can pre-
vent malicious users from faking the resource requirements and thus from thrashing the system. On the other hand, it is not proper either to request much more than the actual demands because the concurrency level of MapReduce jobs and the actual resource utilizations will be reduced and the performance will be degraded as well. We note that how to set appropriate resource requirements for each job is discussed in the next section. In our experiments, we vary the resource requirements for different jobs in order to evaluate the schedulers under various resource requirements, but keep the resource requirements configuration the same under different scheduling algorithms.

4.1.5.2 Experiment Results

Here, we conduct two sets of experiments in a Hadoop YARN cluster with 8 nodes, each of which is configured with the capacity of 8GB memory and 8 virtual cpu cores, i.e., \(<8G, 8cores>\).

Simple Workload. In the first set of experiments, we consider a simple workload which consists of four *Wordcount* jobs. Each job in this workload parses the same 3.5G wiki category links input file. Therefore, all the four jobs have the same number of map and reduce tasks. The map task number is determined by the input file size and the HDFS block size which is set to 64MB in this experiment. As described in Section 4.1.5.1 for different jobs, we vary the resource requirements on a single type of resource for analyzing the impact of resource requirements on the scheduling performance. The configurations of each job and their resource requirements are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Job ID</th>
<th>#Map</th>
<th>#Reduce</th>
<th>(R^m)</th>
<th>(R^r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>5</td>
<td>(<1G, 2cores>)</td>
<td>(<1G, 2cores>)</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>5</td>
<td>(<1G, 3cores>)</td>
<td>(<1G, 2cores>)</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>5</td>
<td>(<1G, 4cores>)</td>
<td>(<1G, 3cores>)</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>5</td>
<td>(<1G, 5cores>)</td>
<td>(<1G, 3cores>)</td>
</tr>
</tbody>
</table>

Figure 4.2 shows the makespans and the average resource (mem and cpu) utilizations under different scheduling policies. Note that the resource utilization presented in this work is the percentage of total cluster resources that have been assigned to execution of that task.
Figure 4.2: Makespans and average resource utilizations under the workload of 4 Wordcount jobs. The left y-axis shows the makespans (sec.) while the right y-axis shows the cpu and memory resource utilizations (%).

MapReduce tasks, instead of actual run time resource usages of cluster nodes which may be lower than the assigned resource amount. We observe that all the conventional schedulers (i.e., FIFO, Fair, and DRF) cannot efficiently utilize the system resources, e.g., under 60% cpu core utilization and under 30% memory utilization. Although these conventional schedulers obtain similar resource utilizations, FIFO outperforms Fair by 23.8% and DRF by 29.3%. That is because under Fair and DRF, when multiple jobs are running concurrently in the cluster, their reduce tasks are launched and thus occupy many of the assigned resources, which may dramatically delay the execution of map phases. Therefore, running reduce tasks have to wait for map outputs and cannot fully utilized their assigned resources. Similarly, the makespan under the FFD-DP scheduling policy is 10% larger than under FIFO, although more system resources are assigned for running tasks under FFD-DP, e.g., 86.6% cpu cores utilization in average. HaSTE solves this problem by considering the impacts of both resource requirements (i.e., fitness) and dependency between tasks (i.e., urgency) and thus achieves the best makespan, which is, for example, 27% and 44.6% shorter than FIFO and Fair, respectively.

Mixed Workload. To further validate the effectiveness of HaSTE, we conduct a more complex workload which is mixed with both cpu and memory intensive MapReduce jobs. Table 4.2 shows the detailed workload configuration, where the input data for Terasort is generated through the Teragen benchmark, and the input for Wordcount and Wordmean is the wiki category links data. In this set of experiments, we set the HDFS file block size to be equal to 128MB.
Table 4.2: Mixed Workload Configuration.

<table>
<thead>
<tr>
<th>Job Type</th>
<th>Job ID</th>
<th>Input Size</th>
<th>#Map</th>
<th>#Reduce</th>
<th>R^m</th>
<th>R^r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terasort</td>
<td>1</td>
<td>5GB</td>
<td>38</td>
<td>6</td>
<td><3GB,1core></td>
<td><2GB,1core></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10GB</td>
<td>76</td>
<td>12</td>
<td><4GB,1core></td>
<td><2GB,1core></td>
</tr>
<tr>
<td>WordCount</td>
<td>3</td>
<td>7GB</td>
<td>52</td>
<td>12</td>
<td><2GB,3cores></td>
<td><1GB,2cores></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.5GB</td>
<td>26</td>
<td>6</td>
<td><2GB,4cores></td>
<td><1GB,2cores></td>
</tr>
<tr>
<td>WordMean</td>
<td>5</td>
<td>7GB</td>
<td>52</td>
<td>8</td>
<td><2GB,2cores></td>
<td><1GB,1core></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.5GB</td>
<td>26</td>
<td>4</td>
<td><2GB,1core></td>
<td><1GB,1core></td>
</tr>
<tr>
<td>PiEstimate</td>
<td>7</td>
<td>-</td>
<td>50</td>
<td>1</td>
<td><1GB,3cores></td>
<td><1GB,1core></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-</td>
<td>100</td>
<td>1</td>
<td><1GB,4cores></td>
<td><1GB,1core></td>
</tr>
</tbody>
</table>

Figure 4.3: Makespans and average resource utilizations under the mixed workload of four benchmarks. The left y-axis shows the makespans (sec.) while the right y-axis shows the cpu and memory resource utilizations (%).

Figure 4.3 plots the makespans and the average resource utilizations under this mixed workload. Consistently, the three conventional scheduling policies have similar average resource utilizations, e.g., around 50% for both cpu and memory. However, in this experiment, jobs experience similar makespans under the Fair and DRF policies as well as under FIFO. We interpret this by observing that the ApplicationMasters killed the running reduce tasks to prevent the starvation of map tasks when these reduce tasks occupy too many resources. On the other hand, both FFD-DP and HaSTE increase the average resource utilizations, e.g., to around 80%, through the resource-aware task assignment. Improvements on makespan is 18.1% and 14.8% compared to FIFO and Fair, respectively under FFD-DP, which is not as much as the improvements on resource utilization of cluster. The main reason is that extra resources that have been assigned to tasks cannot be efficiently utilized due to task dependencies. HaSTE further improves the performance in terms of makespan by
36.3% and 33.9% compared to FIFO and Fair, respectively.

Figure 4.4: Illustrating the memory resources that have been allocated to each job cross time under different scheduling policies.

To better understand how these scheduling policies work, we further plot the runtime memory allocations in Figure 4.4. We observe that the precedence constraint of FIFO policy and the fairness constraint of Fair and DRF policies can both lead to inefficient resource allocation in the Hadoop YARN cluster. For example, when cpu intensive jobs are running under the FIFO policy, see job 3,4,6,7 in Figure 4.4(a), the
scheduler cannot co-schedule memory intensive jobs at the same time, and a large amount of memory resources in the cluster are idle for a long period. Under the Fair and DRF policies, although all jobs share the resources, the fairness constraint, i.e., all jobs should get equal shares on average, in fact hinders the efficient resource utilizations. For example, when a node has \(< 1 GB, 4 cores >\) available resources and two tasks \(t_1\) and \(t_2\) with \(R_1 = < 1 GB, 4 cores >\) and \(R_2 = < 1 GB, 1 core >\) are waiting for service, Fair may assign resources to \(t_2\) if this tasks now deserves more share of resources, which will lead to a waste of 3 cpu cores on the node. We also observe that by tuning the resource shares among different jobs, the FFD-DP policy could achieve better resource utilizations across time. More importantly, HaSTE also achieves high or even slightly higher resource utilizations across time. This is because HaSTE allows jobs whose resource requirements can better fit the available resource capacities to have higher chance to get resources and thus improves the resource utilizations.

In summary, HaSTE achieves non-negligible improvements in terms of makespans and resource utilizations when the MapReduce jobs have various resource requirements. By leveraging the information of job resource requirements and cluster resource capacities, HaSTE is able to efficiently schedule map/reduce tasks and thus improve the system resource utilization. In addition, the makespans of MapReduce jobs are further improved by taking the dependency between map and reduce tasks into consideration when multiple jobs are competing for resources in the YARN cluster.
4.2 Idleness Management of YARN System through Opportunistic Scheduling

Popular resource management schemes, i.e., Hadoop YARN [7] and Mesos [8], both adopt fine-grained resource management, i.e., leveraging the knowledge of task resource requirements, system residual resources, and scheduling policies to assign resources to tasks of applications from different frameworks. Applications from different frameworks need to send resource requests for their tasks, which consist of cpu and memory demands, to a centralized resource manager. Scheduler resides in the resource manager can then assign tasks based on global status, e.g., current resource assignment to applications and residual resources on cluster nodes. High cluster resource utilization level is expected under such resource management schemes based on the following reasons. First, cluster resources are more effectively shared among multiple applications and frameworks compared with static resource partitioning. Secondly, resource assignments are performed at task level. Since tasks have relatively lower resource demands and shorter life times than applications, it is easier to assign resources for tasks and the assigned resources can also be recycled for future usage quickly. Moreover, different resource types are considered when assigning resources such that tasks can be efficiently co-assigned for better resource utilization, e.g., assign cpu intensive tasks and memory intensive tasks to the same node.

However, these schemes still cannot fully utilize cluster resources. A production cluster at Twitter managed by Mesos has reported to have aggregate cpu utilization lower than 20% when reservations reach up to 80% [14], and Google’s Borg system has reported aggregate cpu utilization of 25-35% while reserved cpu resources exceed 70% [15]. One main reason is that current resource management schemes always reserve fixed amount of resources for each task according to its resource request. Yet, we observe that tasks from many frameworks and applications actually have fluctuating resource usage patterns. As an example, reduce tasks in MapReduce framework usually have low cpu utilization in their shuffle stage when they are waiting for map tasks to generate outputs. And they become more cpu intensive after their shuffle phases have finished, i.e., fetched all intermediate data from map tasks. Another example is Spark tasks. When deployed on a YARN system, each spark task is an
executor that hosts multiple user-defined stages which may require different types and amounts of resources. Even more, when Spark tasks serve interactive queries, resource usage of these tasks can change frequently, e.g., being totally idle during the user's thinking time, and becoming busy and requesting more resources upon the user's query arrivals. Similarly, frameworks that process streaming data may keep a large number of tasks being alive and waiting for streaming inputs for processing. Resource requirements thus have to change over time upon the arriving of incoming new data which is unfortunately non-predictable. In these cases, fixing the assignment of resources during a task’s lifetime becomes inefficient to fully utilize system resources.

Motivated by this problem, we present a new opportunistic scheduling approach that helps resource management schemes to improve system resource utilization and application throughput. The main idea of our approach is to leverage the knowledge of actual run-time system resource utilizations for task assignment. That is, when observing that a running task is idle or not fully utilizing its assigned resources, we aggressively assign the spare resources for running eligible pending tasks. The key issue to be addressed in our approach is how to reduce or avoid performance interference when running tasks are requiring more resources which have already been assigned to others during their idle periods. To solve this problem, we restrict that only tasks with short life times are eligible for stealing idle resources from running tasks, i.e., opportunistic scheduling. Given that, we expect that (1) opportunistic scheduled tasks have high chances to finish before running tasks requiring back their resources, such that there are fewer severe resource contentions and performance interferences, and (2) killing opportunistically assigned tasks upon resource contentions will not result in significant work and resource waste. Different contention relief policies are also designed for preventing performance interferences when detecting resource contentions. We implement the new opportunistic scheduling approach in Hadoop YARN, and evaluate its effectiveness with MapReduce and Spark workloads. Experiment results show clear improvements on both cluster resource utilizations and application response times.
4.2.1 Background and Motivation

4.2.1.1 Resource Capacity and Reservation in a Cluster

The current cluster resource management is based on resource reservation. Basically, each cluster member declares its resource capacity, specifically the number of CPU cores and the memory size. On the other hand, when submitting a job, the user needs to specify the resource demand for each task of the job. A centralized resource manager is responsible for allocating the resources to each pending task. Specifically, each task will be executed in a resource container that occupies the amounts of resources requested by the task. The resource manager may adopt different strategies when assigning pending tasks to cluster members. However, an important common rule is to choose a cluster member with sufficient resources (i.e., no less than the resource demands of the task). In other word, for each cluster member, the total amounts of the resources allocated to all the active tasks running on it cannot exceed its capacities.

Each task that gets its desired resource starts to run as a process on a cluster node, and the assigned resource will not be released until the task is terminated. For example, consider a cluster that has a node with cpu and memory resource capacity of \(< 3\text{vcores}, 3\text{GB} >\), and two pending tasks with resource requirement of \(< 1\text{vcore}, 2\text{GB} >\). After one of the pending tasks is running on it, the residual resource capacity of that node becomes \(< 2\text{vcores}, 1\text{GB} >\), which is then not sufficient for running the second pending task. Consequently, the second task has to wait till the running task finishes and releases its resource.

Typically, users should be responsible for requesting appropriate amount of resources (e.g., cpu and memory) for tasks of their applications. Current resource management frameworks for cluster computing use a single value to represent task resource demand on each resource type, and reserve fixed amount of resources for tasks according to the demand values through their life times. Therefore, users tend to configure a high resource demand value according to the peak usage of their tasks. For example, user should configure memory requests of each of their tasks equal to or higher than tasks’ peak usage to avoid out of memory errors. Requests on cpu resource can be more elastic because less cpu resource can only increase the task execution time without causing any task failures. In this work, we keep using roughly
the 75% value of each task’s peak cpu usage as its cpu request and the peak memory usage as its memory request.

4.2.1.2 Understanding Task Resource Usage Pattern

Nevertheless, even if users have a good understanding of their tasks’ resource usage, using a single value still cannot accurately represent task resource requirement since actual resource usage of tasks are usually oscillating over time. In order to understand the patterns of task resource usage, we deploy MapReduce and Spark as two representative frameworks on a YARN platform of 20 slave nodes with 8 cpu cores and 16 GB memory per node, and measure each task’s run-time resource usages on cluster nodes while running applications. In the first experiment, we submit a *terasort* job through MapReduce framework to sort 50 GB input data randomly generated by *teragen*. We classify this job’s tasks into two categories, i.e., short and long, according to their execution times. Short tasks have their execution times less than p minutes (e.g., $p = 1$ in our experiments) while long tasks finish their execution in more than p minutes. In this experiment, most of the map tasks and some of the reduce tasks that start after map phase has finished are short ones, and reduce tasks whose executions overlap with the map phase are identified as long.

We then measure the run time resource usages (e.g., cpu utilizations and used memory sizes) of short and long tasks that are running on one of the cluster nodes, see Figure 4.5. We observe that resource usages of all tasks, especially cpu utilizations, are fluctuating over time. Yet, short and long tasks exhibit different resource usage patterns. Specifically, long tasks in this case have clear idle intervals without any cpu consumption for a considerable long period. Under such situation, reserving fixed amount of resources for each task, i.e., 75% of task’s peak cpu usage, obviously leads to significant resource waste.

To further investigate resource usage patterns under Spark framework, we conduct the second set of experiments by submitting a *pathSim* job which analyzes the similarity between authors using the academic paper submission records. The *pathSim* application includes multiple stages of data transforming and calculation...
and its major operation is block based distributed matrix production. Since Spark is in memory processing framework, we request 9 GB memory for each task in this job. The measured run time resource usages of an task executor are shown in Figure 4.6. As shown in the figure, tasks running in the Spark framework do require large amounts of memory, but do not fully utilize all assigned memory (i.e., 9 GB) at the beginning. Therefore, we argue that requesting the peak amount of memory usage for tasks in Spark can result in low memory utilization at some point.
4.2.1.3 Improve System Resource Utilization

The above results give us some implications that time series resource demand values might be used for resource allocation, which unfortunately is not practical. It is difficult to accurately predict actual resource usages of tasks running in many frameworks. It can also greatly increase complexity of task scheduling even if a precise prior knowledge is available. Our solution to solving this problem is on-line monitoring actual resource usages of all running tasks, and opportunistically scheduling tasks, i.e., reassign idle resources which have been assigned but not fully utilized by running tasks. There are two major issues need to be addressed: (1) which tasks are eligible for opportunistic scheduling, and (2) how to mitigate the impact of possible resource contentions caused by opportunistic scheduling.

![Figure 4.7: Illustrating memory resource usage of tasks and system iowait on one cluster node. (1) The upper row represents normal assignment results. Scheduler reserves resources according to task requests, i.e., peak resource usage of task, for running tasks. Two Spark jobs therefore run sequentially due to the resource limit of system. (2) The lower row represents opportunistic assignment results. Scheduler assigns tasks whenever there are enough free resources on node. Two Spark jobs run concurrently and result in severe performance degradation when they start competing for memory resources.](image)

We thus first investigate the impact of opportunistic scheduling on performance. We setup a YARN cluster with 2 slave nodes, each has 12 cores and 44 GB memory,
and submit two *pathSim* jobs with 8 executor tasks, each has 9 GB memory request. When we set the memory request for each task as 9 GB, only 4 tasks (or executors) can be launched on each slave node, because the remaining memory available on each node, 8 GB in this case, is not enough for running any tasks. Therefore, job 2 has to wait till job 1’s tasks finish and release their resources. Figure 4.7(a)-(b) shows run-time memory usages of tasks running on one of the slave nodes as well as iowait ratios of that node. Each task takes around 10 minutes to finish and makespan of these two jobs is around 21 minutes. No resource contention exists in this case since each task is guaranteed to maintain their requested resource amount, i.e., 9 GB memory, during the entire period of their execution. To better utilize system resource, we can adopt opportunistic scheduling scheme (i.e., launching task to a slave node based on that node’s present actual resource utilization). Under this scheme, ResourceManager can schedule tasks from job 2 shortly after job 1 starts, because job 1’s tasks have low memory usages at the beginning, see figure 4.7(c). Once ResourceManager detects idle memory resources on a node, it assigns available memory to tasks of job 2. However, when all running tasks from both jobs need more memory, the total demand of memory resource exceeds overall memory capacity and thus no tasks can get enough memory for execution. Additionally, such memory contention further increases I/Os for swapping, which severely degrades the performance and will eventually cause task failures.

Typically, we can avoid such resource contention in two ways: (1) suspend or (2) kill tasks that are launched through opportunistic scheduling when detect resource contention. The discussion on pausing and resuming tasks in Hadoop MapReduce has been presented in [69]. Despite suspending tasks can save the efforts on task processing compared with killing tasks, it requires non-negligible extra system design work. Preservation of task status is application and framework dependent, which requires considerable disbursements for cluster computing environments that support a variety of frameworks. Furthermore, it is also not trivial to find right times for task resuming or find appropriate target nodes for migration especially in the highly dynamic cluster computing environments. Therefore, we choose to kill opportunistically

3Tasks do not fail immediately when lacking memory in this case since Spark framework has fault tolerant scheme within each executor.
scheduled tasks in order to relief resource contention and performance degradation. This solution is simple and straightforward, especially, the fault tolerant schemes in current frameworks can well support automatic re-submission of killed and failed tasks.

Moreover, simply and randomly choosing tasks for killing does not work either, it can waste work and weakens the benefit of utilizing idle resources through opportunistic scheduling tasks. We repeat the previous experiment with submitting the same two pathSim jobs to the cluster and introduce contention relief scheme which kills opportunistically launched tasks when detecting memory resource contention. Memory utilization of running tasks are shown in figure 4.8. In this case, job 2’s tasks are opportunistically scheduled with job 1’s tasks when they have low memory usage at the beginning. However, opportunistically scheduled tasks from job 2 are gradually killed after running for more than 8 minutes when normal assigned tasks from job 1 are requiring more memory resources, see time period 400-600 in Figure 4.8(a). As a result, job 1’s execution is delayed (takes more than 700 seconds in this case compared with 600 seconds when running along as shown in Figure 4.7(a)) due to performance interference caused by opportunistically launched tasks, and execution of job 2’s opportunistically launched tasks are totally wasted. Moreover, job 2’s tasks are killed again since all of its 8 tasks have been packed into the same machine after job 1 finished, see time period around 1000 in Figure 4.8(a). Under such case, although cluster memory resources are fully utilized, no jobs benefit from opportunistic scheduling since the waste of work surpass the increase of resource utilization.

![Figure 4.8](image-url)
Figure 4.8: Illustrating memory resource usage of tasks and system iowait on one cluster node under opportunistically scheduling. Task killing is performed to avoid memory contention.

To solve this problem, we only consider tasks that have short life times for oppor-
tunistic scheduling. Such opportunistically launched tasks can finish soon and return occupied resources to eliminate resource contention; and killing these tasks will not waste a significant amount of work. Our proposed opportunistic scheduling scheme is practical and effective due to the following characteristics of cluster computing frameworks. First, most tasks in cluster computing frameworks, e.g., MapReduce tasks [27], are short, which gives us a good chance of opportunistic scheduling. Second, it is highly possible to predict task lengths in most cluster computing frameworks. Jobs in these cluster computing frameworks usually consist of multiple stages, each of which has tasks with identical functionality to process a similar amount of data. It follows that each stage’s tasks usually have similar life times, e.g., as shown in Figure 4.5 4.7, many tasks (represented by lines) have similar execution length. With an accurate prediction mechanism, it is guaranteed that killing opportunistic scheduled tasks has minimum negative effect on overall system performance.

4.2.2 Opportunistic Scheduling - Design and Implementation

In this section, we present a new scheme named OpRM, which aims to improve the system resource utilization as well as throughput of current cluster computing frameworks. In particular, we implement our scheme on top of Hadoop YARN resource management framework and its FAIR scheduling policy.

4.2.2.1 Architecture

Figure 4.9: Demonstrating the architecture of opportunistic scheduling on YARN. Dark components are modified or new designed modules.
Table 4.3: Notations used in this work.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_i</td>
<td>working node i</td>
</tr>
<tr>
<td>R^c_i / R^a_i</td>
<td>resource capacity / available resources on node i</td>
</tr>
<tr>
<td>R^g_i / R^o_i</td>
<td>guaranteed / opportunistic available resources on node i</td>
</tr>
<tr>
<td>T_i / T^n_i</td>
<td>set of total assigned / normal assigned tasks on node i</td>
</tr>
<tr>
<td>t^r / t^n</td>
<td>reserved / next available task</td>
</tr>
<tr>
<td>R^{d}_t / R^{a}_t</td>
<td>resource demand / actual resource usage of task t</td>
</tr>
<tr>
<td>R^{b}_t / T^{b}_t</td>
<td>blocked resources / time period on node i</td>
</tr>
</tbody>
</table>

The architecture of our design upon YARN framework is shown in figure 4.9. We mainly introduce the following three components to the existing YARN framework:

- **Opportunistic Scheduler**: Makes scheduling decisions for pending tasks;
- **Task Classifier**: Classifies pending tasks into short or long task categories;
- **Monitor**: Tracks and reports run-time resource utilizations of running tasks. Performs contention relief policy to prevent performance interference when detects resource contention on node;

Once an application is submitted to YARN system by a client, a special task called ApplicationMaster (AM) will first be launched. AM requires resources for all remaining tasks of the application from the ResourceManager (RM). Task requests are classified into two categories, i.e., short and long, and labeled by the **Task Classifier**. *Opportunistic Scheduler* maintains all waiting task requests in queues, and performs task scheduling whenever receives heartbeat message from a NodeManager which reports status of node and running tasks on node. *Monitors* running on each NodeManager monitor and report run-time utilizations of running tasks to *Opportunistic Scheduler* through heartbeat messages. Furthermore, *Monitors* are also responsible for preventing performance interference caused by opportunistic scheduling. Details of these components are discussed in the following sections. Summary of notations used in this section is listed in table 4.3.

4.2.2.2 Opportunistic schedule

As discussed in Section 4.2.1, tasks do not always fully utilize their assigned resources during their lifetime. However, the ResourceManager under current YARN framework estimates the amount of residual resource on each working node as the gap between
the node resource capacity and the summation of resource demands of tasks running on it, see equation (4.7). Consequently, idle resources on a node might be more than the estimated available resources, which can incur low resource utilization.

\[R^a_i = R^c_i - \Sigma_{t \in T} R^{d}_t; \quad (4.7) \]

To address this issue, we design the opportunistic scheduler, which considers two kinds of available resources, i.e., guaranteed available resources \(R^g \), and opportunistic available resources \(R^o \), for managing and assigning resources. In particular, Opportunistic Scheduler always guarantees the assigned amount of resources are available during a task’s lifetime if that task is assigned with guaranteed available resources. We refer to this kind of resource assignment as normal assignment/schedule. On the other hand, a task might lose its assigned opportunistic available resources before it finishes. We refer to it as opportunistic assignment/schedule. \(R^g \) and \(R^o \) of each working node are calculated in different ways as shown in equation (4.8-4.9). \(R^g_i \) is equal to the difference between node \(i \)'s resource capacity \(R^c_i \) and the resource demands of normal assigned tasks that are currently running on node \(i \). While, the calculation of \(R^o_i \) is based on actual resource usages of all active tasks on node \(i \). Since running tasks may have lower actual resource usage than their resource demands in idle periods, Opportunistic scheduler can then use \(R^o \) to further capture and utilize those reserved but idle resources.

\[R^g_i = R^c_i - \Sigma_{t \in T^N} R^{d}_t; \quad (4.8) \]
\[R^o_i = R^c_i - \Sigma_{t \in T^A} R^{a}_t; \quad (4.9) \]

Algorithm 4.2 presents the high level idea of our scheduling scheme. As discussed in section 4.2.2.1, NodeManager of each working node periodically sends heartbeat messages to ResourceManager, which includes node health status and run-time resource utilizations of each running task. When receiving heartbeat message from one working node, opportunistic scheduler updates the guaranteed/opportunistic available resources of that node through equation (4.8-4.9) see line 2-3. The next waiting task requirement is chosen for assignment from the waiting queues according to user

\footnote{We implement the opportunistic scheduler based on the FAIR scheduling policy. Note it can also be integrated with any other scheduling algorithms.}
defined scheduling policy, e.g., FAIR, see line 10-14. When trying to assign available resources of node, opportunistic scheduler always first tries to assign guaranteed available resources, i.e., normal assign, see line 15-17. If resource demand of the chosen task does not fit into the guaranteed available resources of node, scheduler will try opportunistic assignment, see line 18-19. If the task is still not eligible for opportunistic scheduling or cannot fit into the opportunistic available resources on node, scheduler reserves this task on the node and stops the assignment process until receiving next heartbeat message, see line 20-23. Only one task can be reserved on each node, and the reserved task has a higher priority for assignment, see line 6-9.

In summary, the key difference between the existing scheduler and our proposed opportunistic scheduler lies in the approach of estimating and assigning available resources on node. Existing schedulers only consider to assign available resources which have not been reserved for any tasks, i.e., guaranteed available resources. Opportunistic scheduler instead considers all available resources, including the assigned but not used resources, aiming to improve system efficiency. In the following section, we will discuss how to classify waiting tasks, i.e., determine which tasks are eligible for opportunistic assignment.

4.2.2.3 Task Classifier

In this work, we classify tasks into two categories, i.e., short and long. Our opportunistic scheduler thus only considers short tasks for opportunistic scheduling, such that they have a high chance to finish their work before opportunistic assigned resources vanish and killing these opportunistic assigned short tasks due to resource contention does not incur a significant waste of work. We expect that by this way, idle resources that have yet been assigned or reserved can be effectively reused by other waiting tasks.

One of the issues that need to be addressed is how we can accurately classify a task that is waiting in the system. We claim that execution length of tasks in cluster computing frameworks are predictable. The reason is that tasks from the same stage of an application usually have identical function and process similar size of input data and thus have similar execution length. For example, a wordcount MapReduce application that processes 10GB input data has 80 mapper tasks, each
processes 128MB input data chunk (when the HDFS is configured with 128MB block size), and all these 80 mapper tasks have similar execution times. Another wordcount MapReduce application that processes 100GB input data should have 800 mapper tasks when submitted to the same YARN cluster. Each mapper task still has 128MB input size and thus has similar task execution time compared with mapper tasks in the application that processes 10GB input data. Therefore, we can predict task length based on historical informations. The challenges of accurate task length classification here are (1) scheduler can only get very limited information from a submitted task request; and (2) how do we classify tasks when there is no historical information, e.g., a new type of application.

Our scheme adopts naive Bayes classifier \[61\] to identify tasks as short or long. It has been widely used in text classification and spam filtering due to its high accuracy and low overhead on both storage and computation. And we address the challenges of task classification in cluster computing frameworks by presenting a new hierarchy approach that considers the following five properties to select features for each task \(t\).

- Property 1: the framework (denoted as \(F_t\)), e.g., MapReduce, Spark, Storm, that submits task \(t\);
- Property 2: priority of task \(t\) (denoted as \(S_t\)), since tasks in different stages usually have different priorities in YARN system, this can also be used to determine the stage a task belongs to;
- Property 3: current progress of the application that submits task \(t\) (denoted as \(P_t\), \(P_t \subseteq [0, 1]\));
- Property 4: application name (denoted as \(A_t\)) of task \(t\);
- Property 5: resource demand of task \(t\) (denoted as \(R_t\));

We then define the features of each task \(t\) as a tuple using equation 4.10.

\[
Feature_t = \{F_t, (F_t, S_t), (F_t, S_t, P_t), (F_t, S_t, P_t, A_t), (F_t, S_t, P_t, A_t, R_t)\}; \tag{4.10}
\]
The reason for choosing such hierarchy features instead of using task properties separately are as follows. First, combining these task properties together provides more meaningful hints for better prediction accuracy. For example, a task t of the feature ($F_t = \text{"MapReduce"}$, $S_t = 20$) gives the hint that this task is a mapper task in MapReduce framework5. On the other hand, the task property $S_t = 20$ itself does not convey useful information if considered separately. Furthermore, tasks from the same type of application but running on different frameworks often have varying life time. Considering individual task properties like application name cannot help the classifier getting useful information to distinguish tasks. This may not be a big issue for classic text classification problem when there are a large number of features, e.g., thousands of different vocabularies. However, in our classification criteria, each task request only provides a limited number of properties, such that each feature has significant impact on decisions. Therefore, we decide to combine different task properties in order to get a set of more meaningful features that help distinguish and classify tasks. Secondly, the design of hierarchy features can further help our classifier make reasonable decisions for tasks which are newly met without any historical information. For example, when a new MapReduce job is launched, our classifier can classify its mapper tasks using the historical information of all finished mapper tasks from different applications but running on the same MapReduce framework.

When a task t’s features (Feature_t) are determined, we calculate the posterior probability ($P(C|\text{Feature}_t)$) of its category (C_t) using equations $4.11 - 4.12$ as follows.

$$P(C_t|\text{Feature}_t) \propto P(C_t) * P(\text{Feature}_t|C_t), \quad (4.11)$$

$$P(\text{Feature}_t|C_t) = \prod P(\text{Feature}^i_t|C_t); \quad (4.12)$$

Where $C \in \{\text{short, long}\}$. Task t will then be classified to one of the two categories which has a higher posterior probability. Probabilities, e.g., $P(C_t), P(\text{Feature}^i_t|C_t)$, used in equation $4.11 - 4.12$ are on-line learned and updated upon the completion of tasks. We determine the category (short or long) of finished tasks by checking if their execution times are less than a threshold (e.g., 1 minute) and update all probabilities

5In YARN cluster, all mapper tasks have the task priorities equal to 20, and all reduce tasks have the task priorities equal to 10.
with tasks’ feature and category information. There is a special case when an application with new features is submitted. Without any historical information, we opt to conservatively initialize the probabilities of such features \(P(Feature|C) \) with bias to the long category.

4.2.2.4 NodeManager Monitor

The key idea of our new opportunistic scheduling scheme is to assign idle resources to pending tasks based on actual run time resource usages. Therefore, we implement and plug a monitor module on NodeManagers to (1) keep tracking both cpu and memory usages of running tasks and sending the collected usage information to ResourceManager through heartbeat messages; and (2) detect and solve performance interferences caused by resource contentions when resources on that node have been over provisioned and overall resource demand of running tasks exceeds node capacity.

Algorithm 4.3 shows the main process for detecting and mitigating resource contention on a working node. In particular, our resource monitor periodically collects real-time cpu and memory usage of running tasks, and updates the aggregated cpu and memory usages \(R_{cpu}^{i} \) and \(R_{mem}^{i} \) on the working node \(n_{i} \), see line 1-10. Once \(R_{i}(cpu) \) or \(R_{i}(mem) \) exceeds a pre-defined threshold (see line 13-19 in Algorithm 4.3) the monitor identifies possible existence of resource contention on that node and triggers a mechanism to release some occupied resources to avoid performance interference. In our experiments, we set the threshold as \(\rho * R_{cpu}^{i} \) and \(\rho * R_{mem}^{i} \) for cpu and memory respectively, and \(\rho \), set to be equal to 0.95 in our experiments, can be used to adjust the aggressiveness of our scheme.

We consider the following three policies to solve the problem of performance interference caused by resource contention.

- **LAZY**: this policy only kills the most recently launched task through opportunistic scheduling when the monitor detects contention on memory resources;
- **STRICT**: this policy kills the most recently launched task through opportunistic scheduling when memory or cpu contention has been detected;
- **PRESERVE**: this policy kills the most recently launched task through opportunistic scheduling when memory or cpu contention has been detected, and
further block certain amount of opportunistic available resources of this node for a period of time;

LAZY policy, see line 21-23 in algorithm 4.3, only kills tasks to address memory contentions. This policy ignores cpu contention mainly because cpu contention usually does not cause task failures as memory contention does. As opportunistic tasks are short ones and can return occupied resources quickly, the LAZY policy tends to aggressively keep running these opportunistic tasks even under cpu contentions for achieving better overall performance. One the other hand, the drawback of this policy is that normally reserved resources cannot always be guaranteed especially during the periods of system overload.

In contrast, STRICT is a conservative policy (see line 24-26 of algorithm 4.3) which kills opportunistic tasks under both cpu and memory resource contention. Clearly, this policy can guarantee reserved resources but might incur too frequent task terminations, especially when resource utilizations of running tasks are oscillating, e.g., see figure 4.6.

To avoid killing too many tasks but still guarantee reserved resources, we further present a new contention relief policy, named PRESERVE, by introducing the concepts of blocked resource \(R^b_i \) and block time \(T^b_i \), see line 27-37 of algorithm 4.3. Besides killing opportunistic tasks, this policy further blocks an amount \(R^b_i \) of resources from opportunistic available resources of node \(n_i \) for a time window \(T^b_i \). Under PRESERVE policy, the opportunistic scheduler will estimate opportunistic available resources \(R^o_i \) by considering both actual resource usage of running tasks \(R^a_t \) and the amount of blocked resources \(R^b_i \), see equation 4.14.

\[
R^o_i = R^c_i - \sum_{t \in T} R^a_t - R^b_i; \tag{4.14}
\]

The values of \(R^b_i \) and \(T^b_i \) are adjusted with the similar idea of congestion avoidance algorithm that is used in networking systems. We double the \(R^b_i \) and \(T^b_i \) values to be more conservative if a new resource contention is detected within current blocking time window. Similarly, the values of \(R^b_i \) and \(T^b_i \) will be decreased exponentially by a factor of two if no resource contention has been detected in the \(T^b_i \) window. We also set the minimum/maximum thresholds for both \(R^b_i \) and \(T^b_i \), e.g., in our experiments, we have \(0 < R^b_i \leq 0.5 \times R^c_i \) and the range of \(T^b_i \) is between 30 seconds and 90 seconds.
4.2.3 Evaluation

We implement the proposed opportunistic scheduling scheme OpRM on Hadoop YARN V2.5. We modified the scheduler part in the ResourceManager of YARN (based on Fair scheduler in this work) to include a task classifier and to separate normal task assignment and opportunistic task assignment. In the NodeManager, we enabled run time resource monitoring and reporting as well as contention detection and relief in the ContainerMonitor component. The communication protocols and messages between ResourceManager, NodeManagers, and ApplicationMasters are also modified to convey the actual resource usage and assignment type (i.e., normal or opportunistic) information of tasks. We evaluate OpRM in a YARN cluster with different data processing workloads which are mixed with representative MapReduce and Spark jobs. We then present the detailed experimental settings in Section 4.2.3.1 and discuss experimental results in Section 4.2.3.2.

4.2.3.1 Experiment Settings

We conduct our experiments in a YARN cluster which is deployed in a cloud environment provided by CloudLab [62]. This YARN cluster is configured with one master node and 20 working nodes, each of which has 8 physical cores. We configure 2 virtual cores for each physical core. So there are 16 vcores in total on each working node where we leave 1 vcore for NodeManager and HDFS usage, and the remaining 15 vcores can be used for running cluster computing applications. Each node is configured with memory capacity of 12 GB.

The following four benchmarks are considered in our experiments:

- **pathSim**: a Spark application that computes the meta path based similarity [60] between academic paper authors. Input data is 1.2 million paper submission records.

- **terasort**: a MapReduce application that sorts input records, the input 50GB data is generated through teragen.

- **wordcount**: a MapReduce application that counts the occurrence of each word in input files. Each input file with 50GB data is generated through randomTex-
tWriter.

- *piEstimate:* a MapReduce application that estimates the value of π using the quasi-Monte Carlo method; each task processes 300 million data points.

Table [4.4] shows task configurations of each application, including task numbers and task resource requests. By default, we configure each task’s resource request according to their actual resource usage. The cpu demand of a task is equal to 75% of its peak cpu usage and the memory requirement is set to that task’s maximum memory usage. These applications thus have various resource requirements. For example, tasks from Spark applications are memory intensive while MapReduce tasks are mainly cpu intensive.

4.2.3.2 Experiment Results

We conduct three sets of experiments in a MapReduce YARN cluster to evaluate our new opportunistic scheduling scheme. In all experiments, we use the results under the original YARN framework with Fair scheduler as a base line for comparison. The performance metrics we consider for evaluating the effectiveness of *OpRM* include resource utilizations, and job execution times.

Workloads with MapReduce jobs only

In the first set of experiments, we generate a workload which includes a batch of MapReduce jobs by submitting 2 jobs from each MapReduce application type as listed in Table [4.4]. That is, we run 6 MapReduce jobs in a batch under both original Fair policy, and our opportunistic scheduler. We further consider three mechanisms, i.e., LAZY, STRICT, and PRESERVE for contention relief.

The first set of results, shown in Table [4.5], demonstrates the prediction accuracy of our task classifier which adopts the hierarchy feature-based naive Bayes classification algorithm as described in Section [4.2.2.3]. Each entry in Table [4.5] shows how many short/long tasks are predicted as short or long. We note that the major issue of our scheme is to avoid false positives, i.e., predicting a long task as short, which can incur server resource contention or significant work lost up on task killing. On the other hand, a false negative, i.e., predicting a short task as long, only prevents us
from opportunistically scheduling that task, which in general does not affect overall performance. As shown in the table, despite a slightly high false negative rate, our classifier achieves low false positive rate, where only 2 out of 107 long tasks are classified as short ones.

Figure 4.10: Illustrating the performance of running a batch of MapReduce jobs under different policies.

Figure 4.10 presents average job execution time, and average cluster resource usages. Our OpRM schemes (the PRESERVE, STRICT, and LAZY policies) significantly improve job execution times for each MapReduce application, with average relative improvements of 19.7%, 28.7%, and 32.4%, respectively, compared to Fair. We also observe that our schedulers achieve “fair” (similar) performance improvements across different applications. We can interpret such performance improvements by observing more efficient resource utilizations, see Figure 4.10, under our schemes. As mentioned in Section 4.2.3.1, we have the total cpu capacity of $15 \text{ vcores} \times 20 \text{ nodes} = 300 \text{ vcores}$ in our YARN cluster. The original YARN system with Fair policy in average only actually uses 164 vcores. While, our schemes improves the average cpu usages in cluster through opportunistic scheduling. For example, under the LAZY policy, average number of vcores that are actually used in cluster is increased to 240.

To better understand how original Fair policy and our OpRM with three contention relief schemes work, we depict cpu usages, number of running tasks, and opportunistically scheduled tasks across time on a single cluster node in Figure 4.11-4.12. We observe that the number of vCores under original Fair policy is low and unstable across time, see plot (a) in Figure 4.11. Meanwhile, the number of running tasks are stable
under Fair, see Figure 4.12(a), which indicates that running tasks have fluctuating cpu usage patterns. Through opportunistic scheduling, system resources are better utilized because more tasks are packed into a node when we detect under-utilized resources on that node. Compare with the LAZY and STRICT policies which always keep fully utilize node cpu resources, the PRESERVE policy has low cpu utilization for some time periods. The reason is that Opportunistic-PRESERVE policy is more conservative by blocking opportunistic available resources when resource contentions happen too frequently. We show the amount of blocked opportunistic available vCore resources in Figure 4.13. We can observe that the amount of blocked cpu resources is increased from 2 vcores to 7 vcores after time 700. That is because at that block time window, the cpu usages of both normal tasks and opportunistic tasks are high, which incurs frequent cpu resource contentions, see Figure 4.11(d). As a result, it can avoid severe performance interference during busy periods, e.g., spikes in cpu usages between 900 seconds and 1100 seconds in Figure 4.11(d). On the other hand, this policy may miss out some opportunities for improving system utilizations. For ex-
ample, as shown in Figure 4.11(d), no tasks have been opportunistically scheduled at time 800 and time 1100 when the actual cpu usages are low. Therefore, PRESERVE policy has a lower average resource utilization and worse application execution times compared with the other two contention relief policies in our OpRM, see Figure 4.10. In the next set of experiment, we will show how PRESERVE policy helps guarantee the performance of normal assigned tasks.
Workloads with Mixed MapReduce and Spark jobs

In the second set of experiments, we launch two Spark jobs, i.e., pathSim, to the cluster, such that Spark executors will occupy 10 GB (9 GB executor memory request and 1 GB overhead) memory capacity of each cluster node. We then submit a batch of 6 MapReduce jobs (same configuration with the first experiment sets) to run in parallel with the Spark jobs. Experiment results are shown in Figure 4.14. MapReduce jobs receive significant performance boost in this set of experiments. Average job execution time of all MapReduce jobs is improved by 25.5%, 29.3%, and 36.1% respectively under the PRESERVE, STRICT, and LAZY policies. On the other hand, Spark jobs, i.e., pathSim, do not benefit from opportunistic scheduling. The reason is that Spark jobs have few tasks, and all tasks can be finished in a single wave. Therefore, the parallelism of Spark tasks cannot be further improved for better job execution time. The performance of Spark jobs is even worse under opportunistic scheduling due to the resource contentions caused by opportunistic scheduling. The degradation is 2.7%, 5.4%, and 6.3% respectively under our proposed three contention relief policies. Although have lower system utilization level, PRESERVE policy achieves better performance isolation for normal assigned tasks (i.e., tasks from Spark framework) compared with other two contention relief policies. Moreover, compared with STRICT policy which simply kills tasks when detect resource contention, PRESERVE policy performs task killing much less often. Figure 4.15 depicts the number of killed tasks and the amount of wasted workloads across time under PRESERVE and STRICT policies on a single cluster node. The total killed task number and wasted workload length in cluster is 626 and 4270.8 seconds under STRICT policy, while they drop to 246 and 1752.3 seconds respectively under PRESERVE policy.

Workloads with Mixed MapReduce jobs and Spark jobs with sleeping periods

Finally, we show that our proposed scheme can achieve even better performance improvements when tasks have longer idle periods. For example, tasks from interactive jobs or tasks that process streaming input data may have more frequent and longer idle periods when they are waiting for user inputs or incoming data streams. To
simulate this situation, we conduct the third set of experiments with the same set of jobs in the second experiment set. In this set, 5 minutes sleeping times are introduced into the two *pathSim* jobs after parsing author information and before calculating author similarities. We use this 5 minutes sleeping time to simulate user thinking time in interactive jobs. The performances of different policies is shown in Figure 4.16. Compared with the results of last experiment set as shown in Figure 4.14, average execution time of *pathSim* jobs has increased by around 300 seconds in all policies due to the injected sleeping time. However, performance of MapReduce jobs has experience higher degradation under the original YARN cluster with Fair policy compare to our proposed schemes. Average execution time of MapReduce jobs has increased by 161 seconds under Fair policy while only 37 seconds under our proposed schemes. Performance improvements in terms of MapReduce job execution time are 29.1%, 33.9%, and 39.8% respectively under the PRESERVE, STRICT, and LAZY policies.
Figure 4.16: Illustrating the performance of running Spark jobs with waiting time and MapReduce jobs under different policies.

Figure 4.17 shows the resource utilization across time on one of the cluster nodes under different policies. As shown in the figure, the node is idle in the first 5 minutes, i.e., sleeping time of *pathSim* job, under Fair policy. It is because waiting MapReduce tasks cannot acquire the occupied resources of running Spark tasks even if they are not using any of the assigned resources. On the other hand, our proposed scheme can significantly increase cluster resource utilization and task throughputs through opportunistic scheduling in such idle periods.
Figure 4.17: Illustrating actual resource usage across time on one cluster node under different policies.
Algorithm 4.2: Task Assignment

Data: $n_i, R^g_i, R^o_i, t^r, R^d_t, t^n, R^d_t$

Procedure NodeUpdate(n_i)
1 $R^g_i \leftarrow \text{UpdateGuaranteedAvailable}(n_i)$
2 $R^o_i \leftarrow \text{UpdateOpportunisticAvailable}(n_i)$
3 if $R^g_i < \text{MinAssign} \land R^o_i < \text{MinAssign}$ then
4 \hspace{1em} return
5 $t^r \leftarrow \text{GetReservedTask}(n_i)$
6 $R^d_t \leftarrow \text{GetTaskResourceRequest}(t^r)$
7 if $t^r \neq \text{NULL}$ then
8 \hspace{1em} Assign(t^r, R^d_t)
9 while TRUE do
10 \hspace{1em} $t^n \leftarrow \text{GetNextTaskFromQueue}()$
11 \hspace{2em} $R^d_t \leftarrow \text{GetTaskResourceRequest}(t^n)$
12 \hspace{1em} if Assign(t^n, R^d_t) == NULL then
13 \hspace{2em} \hspace{1em} BREAK;
14 \hspace{1em} Procedure Assign(t, R^d_t)
15 \hspace{2em} if NormalAssign(t, R^d_t) then
16 \hspace{3em} return t
17 \hspace{2em} else if OpportunisticAssign(t, R^d_t) then
18 \hspace{3em} return t
19 \hspace{2em} else
20 \hspace{3em} if $t^r == \text{NULL}$ then
21 \hspace{4em} ReserveTask(t^n, n_i)
22 \hspace{2em} return NULL;
23 \hspace{1em} Procedure NormalAssign(t, R^d_t)
24 \hspace{2em} if $t^r \neq \text{NULL} \land t \neq t^r$ then
25 \hspace{3em} return false;
26 \hspace{2em} else if $R^d_t < R^g_t$ then
27 \hspace{3em} $R^g_t \leftarrow R^g_t - R^d_t$
28 \hspace{3em} $R^o_t \leftarrow R^o_t - R^d_t$
29 \hspace{3em} AssignOnNode(n_i, t);
30 \hspace{3em} if $t == t^r$ then
31 \hspace{4em} UnreserveTask(t^r, n_i)
32 \hspace{3em} return true;
33 \hspace{2em} else
34 \hspace{3em} return false;
35 \hspace{1em} Procedure OpportunisticAssign(t, R^d_t)
36 \hspace{2em} if IsEligibleForOpportunisticAssign(t) then
37 \hspace{3em} if $R^d_t < R^o_t$ then
38 \hspace{4em} $R^o_t \leftarrow R^o_t - R^d_t$
39 \hspace{4em} AssignOnNode(n_i, t);
40 \hspace{4em} if $t == t^r$ then
41 \hspace{5em} UnReserve(t^r, n_i)
42 \hspace{4em} return true;
43 \hspace{3em} return false;
Algorithm 4.3: Node Monitoring

Data: R_i^c, R_i^m, T^o_i, R_i^c, R_i^m, $POLICY$, R^b_i, R^b_i, T^b_i

Procedure Monitoring()

1. while TRUE do

2. R_i^c ← 0;
3. R_i^m ← 0;
4. T^o_i ← {};
5. foreach t in RunningTasks do

6. R_i^c ← R_i^c + CurrentCpuUsage(t);
7. R_i^m ← R_i^m + CurrentMemoryUsage(t);
8. if IsOpportunistic(t) then

9. T^o_i ← T^o_i ∪ {t}
10. Contention ← IsContention(R_i^c, R_i^m, T^o_i)
11. ReliefContention(Contention, POLICY);
12. SLEEP MonitorInterval;

13. Procedure IsContention(R_i^c, R_i^m, T^o_i)

14. if T^o_i ≠ {} then
15. if R_i^m > $\rho \ast R_i^c$ then
16. return Memory;
17. if R_i^c > $\rho \ast R_i^c$ then
18. return Cpu;
19. return NONE;

20. Procedure ReliefContention(Contention, POLICY)

21. if POLICY == LAZY then
22. if Contention == Memory then
23. KillMostRecentLaunchedOpportunisticTask()
24. if POLICY == STRICT then
25. if Contention ≠ NONE then
26. KillMostRecentLaunchedOpportunisticTask()
27. if POLICY == PRESERVE then
28. if Contention ≠ NONE then
29. KillMostRecentLaunchedOpportunisticTask() R^b_i ← R^b_i + 2;
30. T^b_i ← T^b_i * 2;
31. LastReliefTime = CurrentTime;
32. else
33. if CurrentTime − LastReliefTime > t_r then
34. R^b_i ← R^b_i − R^b_i;
35. $R^b_i^\prime$ ← $R^b_i^\prime$ * 2;
36. T^b_i ← T^b_i / 2;
37. LastReliefTime = CurrentTime;

Table 4.4: Task Configurations of Applications.

<table>
<thead>
<tr>
<th>Framework</th>
<th>Application</th>
<th>Task Number</th>
<th>Task Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>pathSim</td>
<td>10 executor</td>
<td>< 4vcores, 9GB ></td>
</tr>
<tr>
<td></td>
<td>terasort</td>
<td>374 mapper</td>
<td>< 4vcores, 1GB ></td>
</tr>
<tr>
<td></td>
<td>wordcount</td>
<td>414 mapper</td>
<td>< 4vcores, 1GB ></td>
</tr>
<tr>
<td></td>
<td>piEstimate</td>
<td>500 mapper</td>
<td>< 3vcores, 1GB ></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 reducer</td>
<td>< 2vcores, 1GB ></td>
</tr>
</tbody>
</table>
Table 4.5: Task duration classification results.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Task Number</th>
<th>Short</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>2777</td>
<td>2417 (87.0%)</td>
<td>360 (13.0%)</td>
</tr>
<tr>
<td>Long</td>
<td>107</td>
<td>2 (1.9%)</td>
<td>105 (98.1%)</td>
</tr>
</tbody>
</table>
4.3 Related Work

The work of Omega [63] provided a high-level overview of two generations of Google’s cluster management systems. Sparrow [64] considers efficient scheduling for sub-second parallel jobs in Spark framework. MATRIX proposed in [65] is a distributed many-task computing execution framework, which utilizes the adaptive work stealing algorithm to achieve distributed load balancing.

Fine-grained resource management was well studied for Hadoop systems. ThroughputScheduler was proposed by Gupta et al. [66] to improve the performance of heterogeneous Hadoop clusters. An explore stage was proposed to learn the resource requirement of tasks and the capabilities of nodes, and the scheduler could then select the best node to assign tasks. Polo et al. [67] leveraged job profiling information to dynamically adjust the number of slots on each node, as well as workload placement across nodes, to maximize the resource utilization of the Hadoop cluster. Our proposed scheduler, however, does not require any learning phases or job profiles for scheduling. Therefore, HaSTE is more lightweight and practical.

Schedule tasks with resource and dependency constraints is known as the NP hard resource constrained project scheduling problem (RCPSP). This problem has been extensively studied in the past decades by many researchers [56–59]. While in YARN system, scheduling tasks for MapReduce jobs is very close to the RCPSP problem since there is also resource and dependency constraints of MapReduce tasks. However, the difference between the dependency of map/reduce tasks and previous defined dependency of tasks in projects distinguishes the scheduling problem of MapReduce jobs. The special dependency between map and reduce phases was studied in recent works [30] of IBM. They proposed to schedule reduce tasks gradually according to the progress of map tasks. However, their solution mainly considers the single job execution situation, and may not be sufficient under resource contention situation in shared cluster.

Improving resource efficiency and throughput of cluster computing platforms was extensively studied in recent years. DynMR [68] presents that reduce tasks in MapReduce framework bundle multiple phases and have changing resource utilization, and propose to assemble multiple reduce tasks into a progressive queue for management
and backfill map tasks to fully utilize system resources. Their work is closely bounded with MapReduce framework, and involves complex task management that cannot be easily extend to other frameworks. Quasar \cite{14} designs resource efficient and QoS-aware cluster management. Classification techniques are used to find appropriate resource allocation to applications to fulfill their QoS requirements and maximize system resource utilization. Resource assignment in their work is to assign one or multiple nodes to the application which is different from task assignment in cluster computing. They mainly address the inefficient resource utilization caused by the gap between user specified application resource requirements and actual resource usage of application. While in our work, we mainly address the resource under utilization caused by fluctuating resource usage pattern of tasks. With the same motivation, work of \cite{69} enables elastic load balancing and scheduling through pausing or consolidating idle tasks.

Resource utilization is of greater importance in large enterprise data centers since increasing utilization by few percents may save a lot in a large scale cluster. Recent published works reveal some technique details of Google’s Borg system \cite{70} and MicroSoft’s Apollo \cite{71} system. They both have design ideas similar to our work, i.e., improve cluster resource utilization by exploring actual resource usage of running jobs and assign idle resources to pending tasks to improve system utilization. Borg classifies jobs into high priority and low priority categories and monitors resource usage of high priority tasks and predict their future usage by adding safety margins. If high priority tasks are not using all their reserved resources, resource manager can reclaim these resources and assign to low priority tasks. Low priority tasks may be killed or throttled when high priority tasks require more resources. Apollo starts opportunistic scheduling after all available resource tokens have been assigned to regular tasks. Fairness is achieved by assigning each job a maximum amount of opportunistic tasks and randomly select opportunistic tasks from waiting jobs when scheduling. Although sharing the similar idea, our work differences from their designs in the following aspects. Instead of using user defined task priorities or assign each job fixed amount of opportunistic tasks proportional to job resource tokens, we automatically classify tasks according to their estimated execution length, and only allow short tasks to be opportunistic scheduled. Through this classification, the interference introduced by
opportunistic scheduling and the penalty of killing unfinished opportunistic tasks are minimized. With our method, high priority tasks can also benefit from opportunistic scheduling, and the amount of opportunistic tasks of each job is determined by task properties instead of job resource requirements. We also design different contention relief policies and investigate the trade off between them. Different policy can then be chosen freely according to different situations, e.g., different task latency sensitivity.
4.4 Summary

In this chapter, we propose a new scheduler for efficiently schedule MapReduce jobs in Hadoop YARN system. Our scheduler considers both the fine-grained resource requirements of tasks and the subtle dependency relationship between tasks while allocating resources. The proposed scheduler was implemented in the Hadoop YARN system and evaluated under classic MapReduce workloads. Experiment results reveal that our scheduler could improve both the resource utilization of system and the makespan of a set of MapReduce jobs. We also implement an opportunistic scheduling based scheme for the resource management layer of cluster computing platforms. In the scheme, we propose to separately consider guaranteed available resources and opportunistic available resources in cluster. We calculate guaranteed available resources according to each task’s resource demands and get the opportunistic available resources according to actual task resource usage. We further classify pending tasks according to their expected running time. By only allowing short tasks for opportunistic scheduling, we can guarantee that performance interference can be minimized and killing opportunistic launched tasks will not lead to significant waste. Different contention relief mechanisms are evaluated through experiments and the results show great utilization and performance improvements with only slight performance interference.
Chapter 5

Conclusion

In the era of big data, more and more data processing applications have migrated into cluster computing platforms due to their increasing input size. As the scale of cluster size and supporting application number grows, there is also increasing importance of the efficiency of cluster computing platforms. In this dissertation, we mainly investigated two popular cluster computing platforms, i.e., Hadoop MapReduce and Hadoop YARN, and aimed to improve their efficiency through more effective resource management.

We found that current design of Hadoop scheduling and resource management is not optimized for cluster computing applications since many prominent features of these applications are not considered. New schedulers and resource management schemes proposed in this dissertation take advantage of our observed application properties to improve system efficiency. We developed a job size-based scheduler for Hadoop MapReduce to improve the average job response time by exploiting the feature of production Hadoop clusters which usually serve diverse workloads with varying job sizes. We designed a self-adjusting slot configuration scheme, which is the first work that uses slot configuration on cluster nodes as a tunable knob to align the execution of map and reduce phase of consequent MapReduce jobs. Makespan of a batch of jobs is greatly improved since map and reduce tasks are consuming different types of system resources and can benefit from pipelined execution. New heuristic was devised for Hadoop YARN which, to the best of our knowledge, is the only work that considers both task resource requirements and task dependencies in MapReduce
framework for more efficient scheduling. We further proposed opportunistic scheduling approach to more efficiently utilize idle resources in YARN cluster caused by fluctuating resource usage patterns of cluster computing tasks.

All of the proposed mechanisms in this dissertation are implemented upon open-sourced Hadoop projects and evaluated with representative workloads. We believe that our work in this dissertation provides valuable extensions to the existing Hadoop platforms, which can be easily adopted when system efficiency is a primary concern. We hope that the designs proposed here can offer a useful reference point of improving efficiency of cluster computing platforms by exploiting features of cluster computing applications.

While multiple scheduling policies and resource management schemes were designed for tackling different performance issues in this work, in the future, we plan to integrate different schemes as an unified solution for Hadoop platform that can automatically adjust according to user defined performance targets. For example, different scheduling algorithms may be automatically selected for different user queues according to their primary performance considerations. Furthermore, as the demand on large-scale data processing grows, new cluster computing platforms are recently developed to support more complex applications such as iterative machine learning and graph processing jobs. We also plan to investigate these new cluster computing applications and platforms and propose more efficient resource management schemes for these complex applications in the future.
Bibliography

