Abstract

We construct a moduli space of stable pairs over a smooth projective variety, parametrizing morphisms from a fixed coherent sheaf to a varying sheaf of fixed topological type, subject to a stability condition. This generalizes the notion used by Pandharipande and Thomas, following Le Potier, where the fixed sheaf is the structure sheaf of the variety. We then describe the relevant deformation and obstruction theories. We show the existence of the virtual fundamental class in special cases. Last, we study examples of stable pairs over surfaces.
I am very grateful to Professor Alina Marian for introducing me to this problem and discussions throughout the process of studying this problem and preparing this paper. I want to thank Professor Lakshmibai for teaching me geometric invariant theory. I also would like to thank Barbara Bolognese, Professor Daniel Huybrechts, Professor Anthony Iarrobino, Doctor Yaping Yang, and Doctor Gufang Zhao for the discussions and correspondences.
Table of Contents

Abstract iii
Acknowledgements iv
Chapter 1 Introduction 1
Chapter 2 Basic Properties of Stable Pairs 7
 2.1 Preliminaries on coherent sheaves 7
 2.2 Stable pairs .. 9
Chapter 3 Boundedness when $\deg \delta \geq \deg P$ 17
Chapter 4 Construction of the Moduli Space when $\deg \delta \geq \deg P$ 24
Chapter 5 Deformation and Obstruction Theories 40
 5.1 Constructions .. 40
 5.2 Proofs .. 43
Chapter 6 Stable Pairs on Surfaces 52
Chapter 7 Examples 55
Appendix The Case $\deg \delta < \deg P$ 59
The past couple of decades of research have highlighted the importance of moduli spaces of decorated sheaves, which are sheaves with additional structure, such as one or more sections. Moduli spaces of rank two vector bundles with a section on a Riemann surface X,

$$E \to X \quad \text{and} \quad \alpha : \mathcal{O}_X \to E$$

were used in [Tha94] to deduce an important invariant of the moduli space of sheaves, the Verlinde number. More recently, Pandharipande and Thomas [PT09, PT10] studied stable pairs (E, α), where E is a sheaf of dimension one, on a Calabi-Yau threefold. They showed that invariants of this moduli space are closely related to the Gromov-Witten invariants of the Calabi-Yau threefold.

We would like to broaden our perspective and replace the structure sheaf by a general coherent sheaf. Subject to a stability condition, we would like to parametrize morphisms of coherent sheaves,

$$\alpha : E_0 \to E,$$
where E_0 is a fixed coherent sheaf. We will denote such a morphism as a pair

$$(E, \alpha).$$

Let us set up the problem. We will work over an algebraically closed field k of characteristic 0. We denote by X a smooth projective variety of dimension n, with a fixed polarization $\mathcal{O}_X(1)$. We fix a coherent sheaf E_0 on X. Let P be a fixed polynomial of degree $d \leq n$. Let $\delta \in \mathbb{Q}[m]$ be another polynomial with a nonnegative leading coefficient; this will play the role of parameter for stability conditions.

When δ is large, i.e. $\deg \delta \geq \deg P$, a pair (E, α), such that the Hilbert polynomial of E equals P, is stable if E is pure and the support of $\text{coker} \alpha$ has dimension strictly smaller than d. This is the most significant case geometrically. In this case, the moduli space of stable pairs is similar to Grothendieck’s Quot scheme. But intersection theory on the moduli space of stable pairs is expected to be more tractable than that on the Quot scheme. This is because we impose the purity condition on the sheaves underlying stable pairs, which allows us to avoid some large dimensional components.

The moduli space of stable pairs in the large δ case is expected to have interesting applications to the enumerative geometry of higher rank sheaves on a surface X. In particular, a potential application is towards the strange duality conjecture. The conjecture over curves was proved [Bel08, MO07] by studying intersection theory on related Grassmannians and Quot schemes. It is reasonable to expect that a similar method using the moduli space of stable pairs will work for the surface case.

The study of stable pairs by Pandharipande and Thomas was built on Le Potier’s work [LP93] on coherent systems. The moduli space of coherent systems was also used to study the Donaldson numbers of the moduli space of sheaves [He98]. A coherent system on X is a pair (Γ, E), where E is a coherent sheaf and $\Gamma \leq H^0(X, E)$ is a subspace of global sections. A pair $(E, \alpha : \mathcal{O}_X \to E)$ can be viewed as a coherent system $(k(\alpha), E)$. However,
when \mathcal{O}_X is replaced by, for example, $\mathcal{O}_X^{\otimes 2}$, the pair can no longer be viewed as a coherent system, because the map $H^0(\alpha): k^{\otimes 2} \to H^0(E)$ may not be injective. Aside from this issue, there is yet another difference between pairs and coherent systems: while the morphism α is part of the data of the pair, the coherent system only remembers the image of $H^0(\alpha)$. Consequently, when one tries to parametrize $\alpha: E_0 \to E$ for general E_0, Le Potier’s construction does not automatically apply. But the main ingredients of constructing the moduli space remain the same: Grothendieck’s Quot scheme [FGA61] and Mumford’s geometric invariant theory [MFK94].

We have

Theorem 1 (Existence of Moduli Spaces). For the moduli functor $S_{E_0}(P, \delta)$ of S-equivalence classes of δ-semistable pairs, there exists a projective coarse moduli space $S_{E_0}(P, \delta)$. The moduli functor $S^{s}_{E_0}(P, \delta)$ of equivalence classes of δ-stable pairs is represented by an open subscheme $S^{s}_{E_0}(P, \delta)$ of $S_{E_0}(P, \delta)$.

Deformation-obstruction theory of stable pairs is very similar to that of the Quot scheme. For a quotient $q: E_0 \to F$, let $G = \ker q$, then we have a short exact sequence

$$0 \to G \to E_0 \to F \to 0$$

The deformation space and the obstruction space are $\text{Hom}(G, F)$ and $\text{Ext}^1(G, F)$. Notice that G is quasi-isomorphic to the cochain complex $J^\bullet = \{ E_0 \to F \}$, the deformation space, respectively the obstruction space, of this quotient is isomorphic to $\text{Hom}(J^\bullet, F)$, respectively $\text{Ext}^1(J^\bullet, F)$.

The deformation-obstruction problem of stable pairs has a similar answer. Let Art_k be the category of local Artinian k-algebras with residue field k. Let $A, B \in \text{Ob} \text{Art}_k$ and

$$0 \to K \to B \to A \to 0$$
be a small extension, i.e. \(m_B K = 0 \). Suppose \((E, \alpha)\) is a stable pair. Let \(I^\bullet \) denote the following cochain complex concentrating at degree 0 and 1,

\[
I^\bullet = \{ E_0 \xrightarrow{\alpha} E \}.
\]

Theorem 2 (Deformation-Obstruction). *Suppose we have a morphism \(\alpha_A : E_0 \otimes_k A \rightarrow E_A \) over \(X_A = X \times_{\text{Spec} k} \text{Spec} A \) extending \(\alpha \), where \(E_A \) is a coherent sheaf flat over \(A \). There is a class \(\text{ob}(\alpha_A, \sigma) \in \text{Ext}^1(I^\bullet, E \otimes K) \), such that there exists an extension of \(\alpha_A \) over \(X_B \) if and only if \(\text{ob}(\alpha_A, \sigma) = 0 \). If extensions exist, the space of extensions is a torsor under \(\text{Hom}(I^\bullet, E \otimes K) \).

In some special cases, \(\text{Ext}^i(I^\bullet, E) \neq 0 \) only when \(i = 0, 1 \). In these cases, we will demonstrate the existence of the virtual fundamental class, which is important for the study of intersection theory on the moduli spaces.

Theorem 3 (Virtual Fundamental Class). *Suppose \(X \) is a surface, \(E_0 \) is torsion free, \(\deg P = 1 \), and \(\deg \delta \geq 1 \). Then the moduli space \(S_{E_0}(P, \delta) = S_{E_0}(P, \delta) \) of stable pairs admits a virtual fundamental class.

The virtual fundamental class can be used to define invariants of the surface. Kool and Thomas [KT14a,KT14b] studied stable pairs invariants with \(E_0 \cong \mathcal{O}_X \) on surfaces, using the reduced obstruction theory, which is necessary. We will address the intersection theory of the moduli space of stable pairs on a surface in future work.

After this project was completed, I learned about the article [Wan15], where the stability condition for pairs had been defined and the small \(\delta \) case of Theorem 1 of this paper had been stated as the main theorem [Wan15, Theorem 3.8]. In the large \(\delta \) case, \(\deg \delta \geq \deg P \), the
linearized ample line bundle needs to be chosen differently (4.5) for the GIT construction. In this paper, a separate construction is carried out from a basic level. For example, Lemma 10 is shown for characterizing stability in terms of global sections instead of Hilbert polynomials. Theorem 1 covers all cases of the construction, including the geometrically important large δ case. The large δ case is presented in the body of the paper in Sections 3 and 4. The small δ case where the construction was previously carried out by Wandel is included in the appendix for completeness. In view of Wandel’s result, the contents of the appendix are not new. The body of the paper also contains in Section 5 the deformation-obstruction theory, captured by Theorem 2. Section 6 shows the existence of the virtual fundamental class in special geometries, Theorem 3. Section 7 gives examples of smooth moduli spaces and calculate their topological Euler characteristics. Section ?? sets the stage with preliminary results.

I recently learned that the stable pair moduli space for $\deg \delta \geq \deg P$ was also previously studied in [Kol08], where it appears as the moduli space of quotient husks. The author constructed it as a bounded proper separated algebraic space. The space was used in [Kol08] to study an analogue of the flattening decomposition theorem for reflexive hulls. The current paper settles affirmatively the question raised in [Kol08] regarding the projectivity of the space.

I finally note that once the moduli space is constructed for $\deg \delta < \deg P$, it is available in an indirect way for $\deg \delta \geq \deg P$ as well. This follows from the finiteness of the set of critical values and the fact that the largest critical polynomial δ_{max} has $\deg \delta_{\text{max}} < \deg P$. Then the stability polynomial δ' can be taken to be of degree $\deg P - 1$ and larger than δ_{max}. For any δ with $\deg \delta \geq \deg P$, we have $S_{E_0}(P, \delta) \cong S_{E_0}(P, \delta')$. Although this observation is not made in [Wan15], the author proves the set of critical δ’s is finite. This is also included in the current appendix with a different proof.

This indirect argument does not, however, yield the linearized ample line bundle for $S_{E_0}(P, \delta)$ with $\deg \delta \geq \deg P$. For stability polynomials δ' with $\deg \delta' < \deg P$, the lin-
earization depends directly on δ'; the highest critical polynomial δ_{\max} cannot be determined explicitly though, since the boundedness which underlies the finiteness of the set of critical stability values is itself not explicit.

For some applications, it is nevertheless important to know the line bundle explicitly. A natural problem to study next is that of wall-crossing formulas, using Thaddeus’ master space [Tha96, Moc09]. The construction of the master space requires the linearized ample line bundle. So, it is important to construct the moduli space directly via GIT and obtain the ample line bundle. I will address the problem of wall-crossing formulas in future work.
Chapter 2

Basic Properties of Stable Pairs

2.1. Preliminaries on coherent sheaves

For a coherent sheaf E on $(X, O_X(1))$, we denote by P_E its Hilbert polynomial. Recall that, we can write the Hilbert polynomial in the following form

$$P_E(m) = \sum_{i=0}^{d} a_i(E) \frac{m^i}{i!},$$

where $d = \dim E$ is the dimension of the support of E and $a_i(E) \in \mathbb{Z}$. We denote by $r(E) = a_d(E)$ the multiplicity of E. Let

$$p_E = \frac{P_E}{r(E)}$$

be the reduced Hilbert polynomial. For a coherent sheaf E, the slope of E is

$$\mu(E) = \frac{a_{d-1}(E)}{a_d(E)}.$$
A coherent sheaf E is pure if there is no subsheaf of lower dimensional support. It is semistable (respectively slope-semistable), if it is pure and there is no subsheaf with larger reduced Hilbert polynomial (respectively slope). For a pure sheaf, there is a Harder-Narasimhan filtration with respect to slope

$$0 \not\subseteq E_1 \not\subseteq E_2 \not\subseteq \cdots \not\subseteq E_l = E,$$

where E_{t+1}/E_t is slope semistable and $\mu(E_t/E_{t-1}) > \mu(E_{t+1}/E_t)$, for $t \in [1, l-1]$. We shall denote $\mu_{\text{max}}(E) = \mu(E_1)$ and $\mu_{\text{min}}(E) = \mu(E_l/E_{l-1})$.

To construct the moduli space via GIT, the first step is to prove a boundedness result. For our convenience, we group a sequence of boundedness results here.

Theorem G (Grothendieck). Suppose F is a pure coherent \mathcal{O}_X-module of dimension d. Then:

(i) the slopes of nonzero coherent subsheaves are bounded above;

(ii) the family of subsheaves $F' \subset F$ with slopes bounded below, such that the quotient F/F' is pure and of dimension d, is bounded.

We can also make a statement similar to the second assertion about the boundedness of quotients. For the proof of this basic theorem, see [FGA61, Lemma 2.5].

Let Y be the scheme theoretic support of a pure sheaf E of dimension d and multiplicity $r = r(E)$. We include the following results discussed in [LP93].

Lemma 1. The degree of Y is no larger than r^2.

Proof. This is clear from an equivalent definition of multiplicity [LP93, Definition 2.1].

Lemma 2. The minimum slope $\mu_{\text{min}}(\mathcal{O}_Y)$ is bounded below by a constant determined by n, r, and d.

Proof. See [LP93, Lemma 2.12].

8
The following statement [Sim94, Theorem 1.1] is crucial to our proof of boundedness.

Theorem S (Simpson). Let C be a rational constant. The family of pure coherent sheaves E with Hilbert polynomial $P_E = P$, such that $\mu_{\text{max}}(E) \leq C$, is bounded.

Bounding μ_{max} from above is equivalent to bounding μ_{min} from below, because Hilbert polynomial is additive in a short exact sequence.

We will also need the following statement [Sim94, Corollary 1.7].

Lemma 3 (Simpson). Suppose F is a slope semistable sheaf of dimension d, multiplicity r and slope μ. There is a constant C depending on r and d such that

$$\frac{h^0(F)}{r} \leq \frac{1}{d!}([\mu + C]_+)^d.$$

2.2. Stable pairs

Let E_0 be a coherent sheaf on X. Let P be a polynomial of degree d, and δ a polynomial with a nonnegative leading coefficient.

Definition 1. A pair (E, α) (of type P) is a morphism $\alpha : E_0 \to E$ of coherent sheaves on X, where $P_E = P$. A sub-pair $(E', \alpha') \subset (E, \alpha)$ is a morphism $\alpha' : E_0 \to E'$, such that $E' \subset E$ and

$$\begin{align*}
\iota \circ \alpha' &= \alpha, \quad \text{if } E' \supset \text{im} \alpha, \\
\alpha' &= 0, \quad \text{otherwise}.
\end{align*}$$

Here, ι denotes the inclusion $E' \hookrightarrow E$. A quotient pair (E'', α'') is a coherent quotient sheaf $q : E \to E''$ with $\alpha'' = q \circ \alpha : E_0 \to E''$.

We say a pair (E, α) has dimension d if $\dim E = d$.

$^[1] [x]_+ = \max(0, x)$.

9
A morphism $\phi : (E, \alpha) \to (F, \beta)$ of pairs is a morphism of sheaves $\phi : E \to F$ such that there is a constant $b \in k$, $\phi \circ \alpha = b\beta$. By this definition, sub-pairs and quotient pairs can be viewed as morphisms. For simplicity, we shall use the notation ϕ for both the morphism of pairs and that of their underlying sheaves.

A short exact sequence of pairs

$$0 \to (E', \alpha') \xrightarrow{i} (E, \alpha) \xrightarrow{q} (E'', \alpha'') \to 0$$

consists of a short exact sequence of sheaves $0 \to E' \to E \to E'' \to 0$, such that (E', α') is a sub-pair and (E'', α'') the corresponding quotient pair. More precisely, $\alpha'' = q \circ \alpha$ if $\alpha' = 0$, and $\alpha'' = 0$ if $\iota \circ \alpha' = \alpha$.

The Hilbert polynomial (reduced Hilbert polynomial resp.) of a pair (E, α) is

$$P_{(E, \alpha)} = P_E + \epsilon(\alpha)\delta \quad (p_{(E, \alpha)} = p_E + \frac{\epsilon(\alpha)\delta}{r(E)} \text{ resp.}).$$

Here,

$$\epsilon(\alpha) = \begin{cases} 1 & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, Hilbert polynomials are additive in a short exact sequence of pairs.

Definition 2. A pair (E, α) is δ-stable if

(i) E is pure;

(ii) for every proper sub-pair (E', α'), $p_{(E', \alpha')} < p_{(E, \alpha)}$.

Semistability is defined similarly, replacing the strong inequality by the corresponding weak inequality.

The second condition is equivalent to that for every proper quotient pair (E'', α'') of dimension d, $p_{(E'', \alpha'')} > p_{(E, \alpha)}$.

10
Convention. In the rest of this paper, if stability is characterized by a strong inequality, semistability can be characterized by the corresponding weak inequality. So, in such a case, we will only make the statement for stability.

When the context is clear, we will omit δ and only say a pair is stable or semistable.

Clearly, a pair $(E,0)$ is (semi-)stable if and only if E is (semi-)stable as a coherent sheaf. We will call a pair (E,α) non-degenerate if $\alpha \neq 0$. We are primarily interested in non-degenerate semistable pairs, which we are going to parametrize.

A family of pairs parametrized by a scheme T is a morphism of sheaves

$$\alpha_T : \pi_X^*E_0 \to \mathcal{E}$$

over $T \times X$, such that \mathcal{E} is flat over T. Here, π_X is the projection $T \times X \to X$. Two families $\alpha_T : \pi_X^*E_0 \to \mathcal{E}$, $\beta_T : \pi_X^*E_0 \to \mathcal{F}$ are equivalent, if there is an isomorphism

$$\psi : \mathcal{E} \to \mathcal{F}, \quad \text{such that } \psi \circ \alpha_T = \beta_T.$$

In the large δ regime, semistable pairs have some special features:

Lemma 4. When $\deg \delta \geq \deg P$, there is no non-degenerate strictly semistable pair, that is, every non-degenerate semistable pair is stable.

Proof. Suppose (G,α') is a sub-pair of a semistable (E,α), such that $p_{(G,\alpha')} = p_{(E,\alpha)}$, i.e.

$$p_G + \frac{\epsilon(\alpha')\delta}{r(G)} = p_E + \frac{\delta}{r(E)}.$$

Consider the leading coefficients. Because $\deg \delta \geq d$, $\epsilon(\alpha') = 1$ and $r(G) = r(F)$. Thus, $p_E = p_G$. Therefore, $P_E = P_G$, which implies that $G = E$. Hence, $(G,\alpha') = (E,\alpha)$. We have shown that (E,α) is not strictly semistable. \hfill \Box

We also have a reinterpretation of the stability condition.
Lemma 5. Suppose E is a pure coherent sheaf with Hilbert polynomial $P_E = P$ and multiplicity $r(E) = r$. If $\deg \delta \geq d = \deg P$, then a pair (E, α) is stable if and only if for every proper sub-pair (G, α'),
\[
\frac{P_G}{2r(G) - \epsilon(\alpha')} < \frac{P}{2r - \epsilon(\alpha)}.
\]

Proof. When $\deg \delta \geq d$, for any proper sub-pair (G, α'), the inequality
\[
p_G + \epsilon(\alpha') \frac{\delta}{r(G)} < p_E + \epsilon(\alpha) \frac{\delta}{r}
\]
is equivalent to
\[
\frac{\epsilon(\alpha')}{r(G)} \leq \frac{\epsilon(\alpha)}{r}, \quad \text{and in case of equality,} \quad p_G < p_E.
\]

The latter can be easily seen to be equivalent to
\[
\frac{r(G)}{2r(G) - \epsilon(\alpha')} \leq \frac{r}{2r - \epsilon(\alpha)}, \quad \text{and in case of equality,} \quad p_G < p_E.
\]

This last condition is equivalent to the inequality in the statement.

Moreover, there is a geometric characterization of stability.

Lemma 6. If $\deg \delta \geq \deg P$, then (E, α) is stable if and only if E is pure and $\dim \coker \alpha < \deg P$.

Proof. Let G be the image of α. A priori, $r(G) \leq r(E)$. The stability implies that $r(G) \geq r(E)$, as in (2.1). Thus, $r(G) = r(E)$, which implies that E/G has a Hilbert polynomial of degree strictly less than d. Hence, $\dim \coker \alpha < d$.

To prove the other direction, suppose $\dim \coker \alpha < d$. For an arbitrary subsheaf $G \subset E$, if $\im \alpha \subset G$, then $r(G) = r(E)$. We also have $P_G \leq P_E$, thus
\[
p_G + \frac{\delta}{r(G)} \leq p_E + \frac{\delta}{r(E)}.
\]
If \(\text{im } \alpha \not \subset G \), then

\[
p_E \leq p_G + \frac{\delta}{r(E)}
\]

Therefore, the converse is also true.

Pairs share some similar properties of sheaves.

Lemma 7. Suppose \(\phi : (E, \alpha) \to (F, \beta) \) is a nonzero morphism of pairs.

(i) Suppose \((E, \alpha) \) and \((F, \beta) \) are \(\delta \)-semistable of dimension \(d \). Then \(p(E, \alpha) \leq p(F, \beta) \).

(ii) If \((E, \alpha) \) and \((F, \beta) \) are \(\delta \)-stable with the same reduced Hilbert polynomial, then \(\phi \) induces an isomorphism between \(E \) and \(F \). In particular, for a stable pair \((E, \alpha) \),

\[
\text{End}((E, \alpha)) \cong k.
\]

Proof. (i) Let \(\alpha'' = \phi \circ \alpha : E_0 \to \text{im } \phi \). Then \((\text{im } \phi, \alpha'') \) is a quotient pair of \((E, \alpha) \) and a sub-pair of \((F, \beta) \). Thus, \(p(E, \alpha) \leq p(\text{im } \phi, \alpha'') \leq p(F, \beta) \).

(ii) Suppose not, then \(\ker \phi \neq 0 \) or \(\text{im } \phi \neq E \). We also have the inequalities ???). But two equalities do not hold simultaneously, which contradicts the fact that the two stable pairs have the same reduced Hilbert polynomial. Therefore, \(\ker \phi = 0 \) and \(\text{im } \phi = E \). Thus, \(\phi \) is an isomorphism of coherent sheaves. Clearly, the inverse also provides an inverse of pairs. In particular, \(\text{End}((E, \alpha)) \) is a finite dimensional associative division algebra over the algebraically closed field \(k \), hence \(k \).

Proposition 1 (Harder-Narasimhan Filtration). Let \((E, \alpha) \) be a pair where \(E \) is pure of dimension \(d \). Then there is a unique filtration by sub-pairs

\[
0 \subsetneq (G_1, \alpha_1) \subsetneq (G_2, \alpha_2) \subsetneq \cdots \subsetneq (G_l, \alpha_l) = (E, \alpha)
\]

with \(\text{gr}_i = (G_i, \alpha_i)/(G_{i-1}, \alpha_{i-1}) \) satisfying

(i) \(\text{gr}_i \) is \(\delta \)-semistable of dimension \(d \) for all \(i \);
(ii) \(p_{gr_i} > p_{gr_{i+1}}, \) for all \(i. \)

We call this filtration the Harder-Narasimhan filtration of the pair.

The proof is similar to the proof of the existence and uniqueness of the Harder-Narasimhan filtration of a pure sheaf [Sha77, Theorem 1].

Proof. We will prove that there is a maximal destabilizing sub-pair \((G_1, \alpha_1) \), which means \(p(F, \beta) \leq p(G_1, \alpha_1) \) for all \((F, \beta) \subset (E, \alpha) \), and in case of equality, \((F, \beta) \subset (G_1, \alpha_1) \). Then the existence can be proven by induction on the multiplicity of \(E \), as soon as we can prove that \(E/G_1 \) is pure. Assume that it is not pure, there is a subsheaf of dimension strictly less than \(d \). Let \(F \) be the preimage of it in \(E \), then the naturally associated pair \((F, \beta) \) has a strictly larger reduced Hilbert polynomial, contradicting the maximality assumption on \((G_1, \alpha_1) \).

We shall define an order \(\preceq \) for sub-pairs:

\[
(F_1, \beta_1) \preceq (F_2, \beta_2) \quad \text{if} \quad F_1 \subset F_2 \text{ and } p(F_1, \beta_1) \leq p(F_2, \beta_2).
\]

Every ascending chain of coherent subsheaves terminates. So, there are maximal elements with respect to \(\preceq \). Let \((G_1, \alpha_1) \) be a maximal sub-pair with the least multiplicity. We claim that \((G_1, \alpha_1) \) is a maximal destabilizing sub-pair. Assume otherwise, namely, either \(\exists (F, \beta) \subset (E, \alpha), \) such that \(p(F, \beta) > p(G_1, \alpha_1) \), or \(\exists (F, \beta) \subset (E, \alpha) \) such that \(F \not\subset G_1 \) and \(p(F, \beta) = p(G_1, \alpha_1) \). We will derive contradictions from both situations.

In the first situation, we can assume \((F, \beta) \subset (G_1, \alpha_1) \), replacing \(F \) by \(F \cap G_1 \), because \(p(F \cap G_1, \beta \cup \alpha_1) > p(G_1, \alpha_1) \). The morphism \(\beta \cap \alpha_1 \) is defined as follows: \(\beta \cap \alpha_1 = \alpha \) if \(\im \alpha \subset F \cap G_1 \), \(\beta \cap \alpha_1 = 0 \) otherwise. We shall show the last inequality. Consider the following short exact sequence

\[
0 \to F \cap G_1 \to F \oplus G_1 \to F + G_1 \to 0.
\]

Then \(p(F \cap G_1, \beta \cup \alpha_1) + p(F + G_1, \beta + \alpha_1) = p(F, \alpha) + p(G_1, \alpha_1) \) and \(\alpha_d(F \cap G_1) + \alpha_d(F + G_1) = \alpha_d(F) + \)
\(\alpha_d(G_1) \). By the maximality of \((G_1, \alpha_1)\),

\[p(G_1, \alpha_1) > p(F + G_1, \beta + \alpha_1). \tag{2.2} \]

Therefore, \(p(F \cap G_1, \beta \cap \alpha_1) \geq p(F, \beta) > p(G_1, \alpha_1) \), as a result of the following equality

\[
\alpha_d(F \cap G_1)(p(F, \beta) - p(F \cap G_1, \beta \cap \alpha_1)) \\
= \alpha_d(F + G_1)(p(F + G_1, \beta + \alpha_1) - p(G_1, \alpha_1)) + \alpha_d(F \cap G_1)(p(G_1, \alpha_1) - p(F, \beta)). \tag{2.3}
\]

In the second situation, we also have (2.2). Hence, \(p(G_1, \alpha_1) = p(F, \beta) < p(F \cap G_1, \beta \cap \alpha_1) \), which also follows from (2.3).

So, in both situations, there is a sub-pair of \((G_1, \alpha_1)\) with a strictly larger reduced Hilbert polynomial, which will be proven to be impossible.

Fix \((F, \beta) \subset (G_1, \alpha_1)\) with \(p(F, \beta) > p(G_1, \alpha_1) \), which is maximal in \((G_1, \alpha_1)\) with respect to \(\leq\). Let \((F', \beta') \supset (F, \beta)\) be a maximal pair in \((E, \alpha)\). In particular, \(p(F', \beta') \geq p(F, \beta) > p(G_1, \alpha_1) \). Note that \(F' \not\subset G_1 \), otherwise \(\alpha_d(F') < \alpha_d(G_1) \) contradicting the assumption that \(G_1 \) has the least multiplicity. Hence, \(G_1 \not\subset G_1 + F' \). Therefore, \(p(G_1, \alpha_1) > p(G_1 + F', \alpha_1 + \beta') \). An argument similar to (2.3) shows that \(p(G_1 \cap F', \beta \cap \alpha_1) > p(F', \beta') \geq p(F, \beta) \). This contradicts the maximality of \(F \) in \(G_1 \), since \(F \subset G_1 \cap F' \subset G_1 \). Thus, \((G_1, \alpha_1)\) is a maximal destabilizing sub-pair.

Now we shall prove the uniqueness. Suppose

\[0 \subset (G'_1, \alpha'_1) \subset (G'_2, \alpha'_2) \subset \ldots \subset (G'_k, \alpha'_k) = (E, \alpha) \]

is another such filtration. Let \((G'_j, \alpha'_j)\) be the first one in this filtration containing \((G_1, \alpha_1)\). Then there is a non-zero homomorphism of semistale pairs

\[(G_1, \alpha_1) \to (G'_j, \alpha'_j)/(G'_{j-1}, \alpha'_{j-1}).\]
By Lemma 7, $p(G_1, \alpha_1) \leq p(G_j', \alpha_j')/(G_{j-1}', \alpha_{j-1}') \leq p(G_1', \alpha_1')$. With the roles of (G_1, α_1) and (G_1', α_1') reversed, we get $p(G_1', \alpha_1') = p(G_1, \alpha_1)$. Thus, $j = 1$, namely $(G_1, \alpha_1) \subset (G_1', \alpha_1')$. Similarly, $(G_1, \alpha_1) \supset (G_1', \alpha_1')$. So, $(G_1, \alpha_1) = (G_1', \alpha_1')$. We can apply the same argument to $(E, \alpha)/(G_1, \alpha_1)$, arriving at the uniqueness result.

Evidently, in the filtration, there is only one nonzero α_i. In the case where $\deg \delta \geq d$, only α_1 is nonzero.

Proposition 2 (Jordan-Hölder Filtration). Let (E, α) be a semistable pair. There is a filtration

\[0 \subset (F_1, \alpha_1) \subset (F_2, \alpha_2) \subset \cdots \subset (F_l, \alpha_l) = (E, \alpha), \]

such that each factor $\text{gr}_i = (F_i, \alpha_i)/(F_{i-1}, \alpha_{i-1})$ is stable with reduced Hilbert polynomial $p(E, \alpha)$. Moreover, $\text{gr}(E, \alpha) = \oplus \text{gr}_i$ does not depend on the filtration.

Proof. Since we have Lemma 7, the proof goes the same as the argument for Jordan-Hölder filtrations of a semistable sheaf, see e.g. [HL10, Proposition 1.5.2].

Two semistable pairs are **S-equivalent**, if they have isomorphic Jordan-Hölder factors.

Let $S_{E_0}(P, \delta) : \text{Sch}_k \to \text{Set}$ denote the moduli functor of S-equivalent non-degenerate semistable pairs of type P. Let $S_{E_0}^+(P, \delta)$ denote the moduli functor of equivalence classes of non-degenerate stable pairs.
Chapter 3

Boundedness when \(\deg \delta \geq \deg P \)

In order to construct the moduli space via GIT, we first need to prove that the family of semistable pairs is bounded.

In this and the next section, many statements are true either \(\deg \delta \geq \deg P \) or \(\deg \delta < \deg P \), but require different proofs. In these two sections, we will only treat the case where \(\deg \delta \geq \deg P = d \). In Appendix, we will point out modifications needed for the proofs in the cases where \(\deg \delta < d \).

We will show boundedness using Theorem S, by studying \(\mu_{\min} \) of sheaves underlying semistable pairs.

Lemma 8. Fix the Hilbert polynomial \(P \). Suppose \((E, \alpha)\) be a pair, which is semistable for some \(\delta \), with \(P_E = P \). Then, \(\mu_{\min}(E) \) is bounded below by a constant depending on \(P \) and \(X \).

The constant is independent of \(\delta \).

Proof. Let \((E, \alpha)\) be a semistable pair. By Lemma 6,

\[
\dim \operatorname{coker} \alpha < d. \tag{3.1}
\]
Choose an m large enough such that $E_0(-m)$ is generated by global sections. Let Y be the scheme theoretic support of E. The morphism α factors through $E_0|_Y$. We have the following sequence of morphisms

$$H^0(E_0(m)) \otimes \mathcal{O}_Y(-m) \to E_0|_Y \to E \to gr_sE,$$

where the last morphism is the surjection from E onto its last factor of Harder-Narasimhan filtration with respect to slope. By (3.1), the composition is nonzero. Therefore,

$$\mu_{\min}(E) = \mu(gr_sE) \geq \mu_{\min}(H^0(E_0(m)) \otimes \mathcal{O}_Y(-m)) = \mu_{\min}(\mathcal{O}_Y(-m)) = \mu_{\min}(\mathcal{O}_Y) - m,$$

where the last term is bounded below, by Lemma 2. Thus, $\mu_{\min}(E)$ is bounded below by a constant, which depends on X and P.

Combining Lemma 8 and Theorem S, we obtain the following boundedness result.

Proposition 3. Fix the Hilbert polynomial P. The family

$$\{E|(E, \alpha) \text{ is a semistable pair of type } P \text{ w.r.t. some } \delta.\}$$

of coherent sheaves on X is bounded.

Next, we shall prove that, for a bounded family of pure pairs, the family of factors of their Harder-Narasimhan filtrations is bounded:

Lemma 9. Suppose $\Phi : \pi_X^*E_0 \to \mathcal{E}$ over $T \times X$ is a flat family of pure pairs over X parametrized by a finite type scheme T. For each closed point $t \in T$, let $\{(gr^t_1, \alpha^t_1)\}_{t \in I_t}$ be the Harder-Narasimhan factors of $(\mathcal{E}(t), \Phi(t))$, where $\mathcal{E}(t) = \mathcal{E}|_{\text{Spec} k(t) \times X}$ and $\Phi(t)$ is the corresponding morphism. Then, the family $\{gr^t_1\}_{t \in T, t \in I_t}$ is bounded.
The following proof is very similar to the proof of the corresponding statement about the boundedness of Harder-Narasimhan factors of pure sheaves [HL10, Theorem 2.3.2]. We don’t assume \(\deg \delta \geq \deg P \) in this proof.

Proof. We can assume \(T \) to be integral. Define \(A \) as the set of 2-tuples \((P'', \epsilon'')\), such that there is a \(t \in T \) and a pure quotient \(q : \mathcal{E}(t) \twoheadrightarrow E'' \) with Hilbert polynomial \(P_{E''} = P'' \) and \(\epsilon'' = \epsilon(q \circ \Phi(t)) \), which destabilizes \((\mathcal{E}(t), \Phi(t))\):

\[
p'' + \frac{\epsilon'' \delta}{r''} < p + \frac{\epsilon(q \circ \Phi(s)) \delta}{r}.
\]

Here, \(p \) and \(p'' \) denote the corresponding reduced Hilbert polynomials, \(r \) and \(r'' \) denote the multiplicities. From this inequality, we know that \(\mu(E'') \) is bounded above by a constant determined by \(P \) and \(\delta \). Therefore, \(A \) is a finite set by Theorem G.

If this set is empty, then all pairs are semistable. Then, we are done. Otherwise, let’s consider whether there is a \((P, \epsilon_\cdot)\), which is minimal with respect to the total order \(\preceq \) and satisfies the condition that for a generic point \(t \in T \), there is a pure quotient \(q : \mathcal{E}(t) \to F \) with

\[
P_F = P \quad \text{and} \quad \epsilon(q \circ \Phi(t)) = \epsilon_\cdot.
\] (3.2)

The order \(\preceq \) is defined as follows: \((P_1, \epsilon_1) \preceq (P_2, \epsilon_2)\) if \(p_1 + \epsilon_1 \delta/r_1 \leq p_2 + \epsilon_2 \delta/r_2 \), and in the case of equality, \(P_1 \geq P_2 \). This is to pick out the maximal semistable quotient pair with the minimum reduced Hilbert polynomial.

(i) If there is no such a \((P, \epsilon_\cdot)\), then generically, say over the open subscheme \(U \subset T \), pairs are already semistable.

(ii) If there is such a \((P, \epsilon_\cdot)\), let \(U \subset T \) be the open family having quotients satisfying the condition (3.2). The minimal Harder-Narasimhan factors of pairs in \(U \) are parametrized by a subscheme of \(\text{Quot}^P(\mathcal{E}) \). To parametrize all the Harder-Narasimhan factors of pairs parametrized by \(U \), we can iterate the above process for the kernel, which is flat, of the
universal quotient over Quot^P(\mathcal{E}). This process will terminate due the multiplicity reason.

Then, we can run the same algorithm for pairs parametrized by irreducible components of the complement T \setminus U. Because T is noetherian, the process will terminate.

We have thus parametrized the Harder-Narasimhan factors by a finite sequence of Quot schemes.

The following statement enables us to handle the semistability condition via spaces of global sections, instead of Hilbert polynomials.

Lemma 10. Fix \(P \) and \(\delta \) with \(\deg \delta \geq \deg P \). Then there is an \(m_0 \in \mathbb{Z}_{>0} \), such that for any integer \(m \geq m_0 \) and any pair \((E, \alpha)\), where \(E \) is pure with \(P_E = P \) and multiplicity \(r(E) = r \), the following assertions are equivalent.

i) The pair \((E, \alpha)\) is stable.

ii) \(P_E(m) \leq h^0(E(m)) \), and for any proper sub-pair \((G, \alpha')\) with \(G \) of multiplicity \(r(G) \),

\[
\frac{h^0(G(m))}{2r(G) - \epsilon(\alpha')} < \frac{h^0(E(m))}{2r - \epsilon(\alpha)}.
\]

iii) For any proper quotient pair \((F, \alpha'')\) with \(F \) of dimension \(d \) and multiplicity \(r(F) \),

\[
\frac{h^0(F(m))}{2r(F) - \epsilon(\alpha'')} > \frac{P(m)}{2r - \epsilon(\alpha)}.
\]

The proof is modified from that of a similar statement in [LP93].

Proof. The proof will proceed as follows: \(i) \Rightarrow ii) \Rightarrow iii) \Rightarrow i) \). The integer \(m_0 \) will be determined in the course of the proof, non-explicitly.

\(i) \Rightarrow ii) \) The family of sheaves underlying semistable pairs with a fixed Hilbert polynomial is bounded. Thus, there is \(m_0 \in \mathbb{N} \) such that for any integer \(m \geq m_0 \), \(H^i(E(m)) = 0 \), \(\forall i > 0 \). In particular, \(P(m) = h^0(E(m)) \).
In the course of proving the boundedness, we also prove that $\mu_{\max}(E)$ is bounded above, say $\mu_{\max}(E) \leq \mu$. For a proper sub-pair (G, α') of multiplicity $r(G)$, consider the Harder-Narasimhan filtration of G with respect to slope. Let $\nu = \mu_{\min}(G)$. By Lemma 3, we can find a constant B depending on r and d, such that

$$h^0(G(m)) \leq \frac{1}{d!}((1 - \frac{1}{r})([\mu + m + B]_\ast)^d + \frac{1}{r}([\nu + m + B]_\ast)^d)$$

Choose a constant $A > 0$, which is larger than all roots of P. Replace m_0 by $\max\{m_0, A\}$. Then

$$h^0(E(m)) = P(m) \geq \frac{r}{d!} (m - A)^d, \ \forall m \geq m_0.$$

Suppose ν_0 is an integer such that

$$B + \mu(1 - \frac{1}{r}) + \frac{\nu_0}{r} < -A.$$

Enlarge m_0 if necessary, we have

$$\frac{1}{d!}((1 - \frac{1}{r})([\mu + m + B]_\ast)^d + \frac{1}{r}([\nu_0 + m + B]_\ast)^d) < \frac{P(m)}{r}, \ \forall m \geq m_0,$$

by considering the first and the second leading coefficients.

Thus, when $m \geq m_0$ and $\nu \leq \nu_0$, combining (3.3) and (3.4), we get

$$h^0(G(m)) < \frac{r(G)}{r} h^0(E(m)) \leq \frac{2r(G) - \epsilon(\alpha')}{2r - \epsilon(\alpha)} h^0(E(m)).$$

The last weak inequality is a consequence of (2.1).

We are left to consider the case where $\nu > \nu_0$. First, notice that we can assume E/G to be pure. If not, consider the saturation of G in E, namely, the smallest $\bar{G} \supset G$, such that E/\bar{G} is pure. If we can prove the inequality in ii) for \bar{G}, then it’s also true for G, since $r(G) = r(\bar{G})$ and $h^0(G(m)) \leq h^0(\bar{G}(m))$. Notice that $\mu(G) \geq \nu > \nu_0$, the family of such G is bounded, by
Theorem G. So, there are only finitely many Hilbert polynomials of the form P_G for such G. Moreover, we can enlarge m_0 again, if necessary, such that for $m \geq m_0$, $P_G(m) = h^0(G(m))$ and

$$\frac{P_G}{2r(G) - \epsilon(\alpha')} < \frac{P}{2r - \epsilon(\alpha)} \iff \frac{P_G(m)}{2r(G) - \epsilon(\alpha')} < \frac{P(m)}{2r - \epsilon(\alpha')}.$$

Therefore, by Lemma 5 and (3.5),

$$\frac{h^0(G(m))}{2r(G) - \epsilon(\alpha')} < \frac{h^0(E(m))}{2r - \epsilon(\alpha')}.$$

ii) \Rightarrow iii) From a proper quotient pair (F, α''), we can get a short exact sequence

$$0 \rightarrow (G, \alpha') \rightarrow (E, \alpha) \rightarrow (F, \alpha'') \rightarrow 0.$$

We thus obtain an exact sequence

$$0 \rightarrow H^0(G(m)) \rightarrow H^0(E(m)) \rightarrow H^0(F(m)).$$

(3.6)

Therefore, $h^0(F(m)) \geq h^0(E(m)) - h^0(G(m))$. Notice that $r(E) = r(G) + r(F)$ and $\epsilon(\alpha) = \epsilon(\alpha') + \epsilon(\alpha'')$. Thus,

$$\frac{h^0(F(m))}{2r(F) - \epsilon(\alpha'')} \geq \frac{h^0(E(m)) - h^0(G(m))}{(2r - \epsilon(\alpha')) - (2r(G) - \epsilon(\alpha'))} \geq \frac{h^0(E(m))}{2r - \epsilon(\alpha')} \geq \frac{P(m)}{2r - \epsilon(\alpha')}.$$

iii) \Rightarrow i) Take the Harder-Narasimhan filtration of E with respect to slope. Suppose F is the last factor, then $\mu(F) = \mu_{\text{min}}(E)$, denoted as μ''. By Lemma 3,

$$\frac{h^0(F(m))}{r(F)} \leq \frac{1}{d!}([\mu'' + m + C],')^d.$$

(3.7)

Let (F, α'') be the induced quotient pair. If $\epsilon(\alpha'') \neq 0$, then (E, α) is stable, since in the Harder-Narasimhan filtration, only the first morphism is nonzero. So, assume $\epsilon(\alpha'') = 0$.

22
Then
\[
\frac{P(m)}{r} < \frac{2P(m)}{2r - \epsilon(\alpha)} < \frac{h^0(F(m))}{2r(F)} \leq \frac{1}{d!}(\mu'' + m + C)^d.
\]

If \(m \geq m_0 \), the preceding inequality with \(P(m)/r \geq (m-A)^d/d! \) implies that \(m-A \leq \mu''+m+C \). Therefore, \(\mu_{\min}(E) = \mu'' \geq -A-C \). Thus, the family of coherent sheaves satisfying the third condition for an \(m \geq m_0 \) is bounded.

Let \(\text{gr}_s = (\text{gr}_s E, \text{gr}_s \alpha) \) denote the last Harder-Narasimhan factor of the pair \((E, \alpha) \). Then
\[
\frac{h^0(\text{gr}_s E(m))}{2r(\text{gr}_s E) - \epsilon(\text{gr}_s \alpha)} > \frac{P(m)}{2r - 1}.
\]

By Lemma 9, enlarge \(m_0 \) if necessary, we can assume that, \(\forall m \geq m_0 \),

(i) \(h^0(\text{gr}_s E(m)) = P_{\text{gr}_s E}(m) \);

(ii)
\[
\frac{P_{\text{gr}_s E}(m)}{2r(\text{gr}_s E) - \epsilon(\text{gr}_s \alpha)} > \frac{P(m)}{2r - 1} \iff \frac{P_{\text{gr}_s}}{2r(\text{gr}_s E) - \epsilon(\text{gr}_s \alpha)} > \frac{P}{2r - 1}.
\]

Therefore, \(\epsilon(\text{gr}_s \alpha)/r(\text{gr}_s E) \geq 1/r \), which implies \(\epsilon(\text{gr}_s \alpha) = 1 \). Thus, \(s = 1 \), which means \((E, \alpha) \) is semistable, thus stable.

Replacing the strong inequalities by weak inequalities, the lemma is also true.
Fix the smooth projective variety $(X, \mathcal{O}_X(1))$, the coherent sheaf E_0, the Hilbert polynomial P, and the stability condition δ.

By boundedness results proven in the last section, there is an $N \in \mathbb{Z}$ such that for any integer $m > N$, the following conditions are satisfied:

(i) $E_0(m)$ is globally generated.

(ii) $E(m)$ is globally generated and has no higher cohomology, for every E appearing in a δ-semistable pair (Proposition 3). Similar results hold for their Harder-Narasimhan factors (Lemma 9).

(iii) The three assertions in Lemma 10 are equivalent.

Fix such an m and let V be a vector space such that

$$\dim V = P(m).$$
Suppose (E, α) is a semistable pair, then E can be viewed as a quotient
\[q : V \otimes \mathcal{O}_X(-m) \to E. \]

Another datum of the pair is the morphism α. It gives rise to a linear map
\[\sigma : H^0(E_0(m)) \to H^0(E(m)) \cong V. \]

Thus, a semistable pair gives rise to the following diagram
\[
\begin{array}{ccc}
K_0 & \xrightarrow{\iota} & H^0(E_0(m)) \otimes \mathcal{O}_X(-m) \\
& \downarrow{\sigma} & \downarrow{\alpha} \\
V \otimes \mathcal{O}_X(-m) & \xrightarrow{q} & E
\end{array}
\]

Here, ι is the kernel of the evaluation map ev. Conversely, we can obtain a pair from a quotient q and a linear map σ as long as $q \circ \sigma \circ \iota = 0$. Also notice that, $\sigma = 0$ if and only if $\alpha = 0$.

We will study in the following spaces:

\[\mathbb{P} = \mathbb{P}(\text{Hom}(H^0(E_0(m)), V)) = \text{Proj}(H^0(E_0(m)) \otimes V^\vee) \]
\[\text{and} \quad Q = \text{Quot}_X^E(V \otimes \mathcal{O}_X(-m)). \]

This is motivated by a similar construction in [HL95a, HL95b]. Spaces \mathbb{P} and Q are fine moduli spaces, with universal families:

\[H^0(E_0(m)) \otimes \mathcal{O}_\mathbb{P} \to V \otimes \mathcal{O}_{\mathbb{P}}(1) \] \hspace{1cm} (4.1)
\[\text{and} \quad V \otimes \mathcal{O}_X(-m) \to \mathcal{E}. \] \hspace{1cm} (4.2)
Let

\[Z \subset \mathbb{P} \times Q \]

be the locally closed subscheme of points \(\xi = ([\sigma], [q]) \) such that

(i) \(q \circ \sigma \circ \iota = 0 \);

(ii) \(E \) is pure;

(iii) the quotient \(q \) induces an isomorphism of vector spaces \(V \sim \to H^0(E(m)) \).

There is a natural \(SL(V) \)-action on \(\mathbb{P} \times Q \), given as follows,

\[([\sigma], [q]) \cdot g = ([g^{-1} \circ \sigma], [q \circ g]) \]

for \(g \in SL(V) \) and \(([\sigma], [q]) \in \mathbb{P} \times Q \). It can be easily checked that this indeed defines a right action. It is clear that \(Z \) is invariant under this action. The closure \(\bar{Z} \) of \(Z \subset \mathbb{P} \times Q \) is invariant as well.

We are going to construct the moduli space by taking the GIT quotient of \(\bar{Z} \), eliminating the extra information coming from identifying \(V \) and \(H^0(E(m)) \). A key step is to relate the \(\delta \)-stability condition to a GIT-stability condition, which will occupy a large part of this section. The central theorem we will need is the Hilbert-Mumford Criterion, which we shall recall.

Let \(G \) be an algebraic group. A 1-parameter subgroup (1-PS) of \(G \) is a nontrivial homomorphism \(\lambda : \mathbb{G}_m \to G \). Let \(X \) be a proper algebraic scheme with a \(G \)-action, and \(L \) be a \(G \)-linearized line bundle. Let \(x \in X \) be a closed points, and denote the orbit map as \(\psi_x : G \times \{ x \} \to X \). Let \(\lambda \) be a 1-PS of \(G \). Then \(\psi_x \circ \lambda \) extends to a morphism \(f : \mathbb{A}^1 \to X \).

The point \(f(0) \) is fixed under the action of \(\mathbb{G}_m \). Thus, there is an induced action of \(\mathbb{G}_m \) on the fiber of \(L \) at \(f(0) \), which is nothing but a character of \(\mathbb{G}_m : \mathbb{G}_m \to \mathbb{G}_m, z \mapsto z^r \). Then we define

\[\mu^L(x, \lambda) = -r. \]
Although we use the terminologies invertible sheaves and line bundles interchangeably, we do mean the line bundle associated to the invertible sheaf in defining $\mu^L(x, \lambda)$.

GIT semistability can be determined by numbers $\mu^L(x, \lambda)$ via the following practical criterion:

Theorem HM (Hilbert-Mumford Criterion). Let a reductive group G act on a proper scheme X. Let L be an ample G-linearized line bundle, and $x \in X$ a closed point. Then

\[x \text{ is semistable w.r.t. } L \iff \mu^L(x, \lambda) \geq 0, \forall \text{ 1-PS } \lambda, \]

\[x \text{ is stable w.r.t. } L \iff \mu^L(x, \lambda) > 0, \forall \text{ 1-PS } \lambda. \]

We next define a $SL(V)$-linearized ample line bundle on $P \times Q$, with respect to which, the GIT-stability condition will agree with the δ-stability condition.

For an $l >> 0$, we obtain an embedding, which is $SL(V)$-equivariant,

\[
Q = Quot_P^X(V \otimes O_X(-m)) \to \text{Grass}(V \otimes H^0(O_X(l-m)), P(l)),
\]

\[
[q: V \otimes O_X(-m) \to E] \mapsto [H^0(q(l)): V \otimes H^0(O_X(l-m)) \to H^0(E(l))].
\]

A priori, we may just let $l = m$. But in order to make the calculation easier, we want l to be large. The reason will be clear later.

The standard very ample line bundle on the Grassmannian is $SL(V)$-linearized. Let $O_Q(1)$ be its pullback to Q. The line bundle $O_Q(1)$ is also $SL(V)$-linearized. For positive integers n_1 and n_2, consider the $SL(V)$-linearized line bundle

\[L = O_{\mathbb{P}}(n_1) \boxtimes O_Q(n_2). \]

Let $\lambda: \mathbb{C}^* \to SL(V)$ be a 1-PS of $SL(V)$. For a point

\[\xi = ([\sigma], [q]) \in \mathbb{P} \times Q, \]

27
we will compute $\mu^L(\xi, \lambda)$. Recall that $\mu^{L_1 \otimes L_2} = \mu^{L_1} + \mu^{L_2}$. So, we can calculate $\mu^{\mathcal{O}(n_1)}(\xi, \lambda)$ and $\mu^{\mathcal{O}(n_2)}(\xi, \lambda)$ separately.

From the \mathbb{C}^*-action on V, we have a weight decomposition of V as

$$V = \bigoplus_{1 \leq i \leq s} V_i$$

where V_i is the isotypic component of weight $\gamma_i \in \mathbb{Z}$. Arrange γ_i's such that $\gamma_1 < \gamma_2 < \cdots < \gamma_s$.

We get a filtration

$$W_1 \subset W_2 \subset \cdots \subset W_s = V,$$

where $W_j = \bigoplus_{i=1}^j V_i$.

Let $\{e_u^i\}_u$ be a basis of V_i. Then $\sigma : H^0(E_0(m)) \to V$, considered as an element in $H^0(E_0(m))^\vee \otimes V$, can be written as $\sigma = \bigoplus_u f_u^i \otimes e_u^i$ where $0 \neq f_u^i \in H^0(E_0(m))^\vee$. Denote the largest i appearing in the direct sum by $i(\sigma)$ and define $\gamma(\sigma) = \gamma_i(\sigma)$. Then, the contribution to $\mu^L(x, \lambda)$ from $\mathcal{O}_P(n_1)$ is

$$n_1 \gamma(\sigma).$$

The filtration on V induces a filtration on E

$$F_1 \subset F_2 \subset \cdots \subset F_s = E.$$

Here $F_j = q(W_j \otimes \mathcal{O}_X(-m))$. Let $\text{gr}_j = F_j/F_{j-1}$. The family of subsheaves $F \subset E$ of the form $q(W \otimes \mathcal{O}_X(-m))$ for some subspace $W \leq V$, is bounded. So is the family of factors. Thus, $\exists l_0 \in \mathbb{N}$, such that for all such F_j's and factors,

$$H^i(F_j(l)) = 0 \text{ and } H^i(\text{gr}_j(l)) = 0, \quad \forall l > l_0, i > 0. \quad (4.3)$$

Twist the filtration of E by $\mathcal{O}_X(l)$, we get a filtration of $E(l)$, whose factors are $\text{gr}_i(l)$.
View q as a point in the Grassmannian, the limit

$$
\lim_{z \to 0} \lambda(z) = \bigoplus_{i=1}^{s} H^0(\text{gr}_i(l)).
$$

For a proof of this claim, see [HL10, Lemma 4.4.3]. The line bundle associated to the invertible sheaf $O_Q(1)$ at this limit has fiber

$$
\bigwedge^{P(l)} \bigoplus_{i=1}^{s} H^0(\text{gr}_i(l)).
$$

This has weight $\sum_{i=1}^{s} \gamma_i h^0(\text{gr}_i(l))$. Thus, the contribution to $\mu^L(\xi, \lambda)$ from $O_Q(n_2)$ is

$$
-n_2 \sum_{i} \gamma_i h^0(\text{gr}_i(l)) = -n_2 \sum_{i=1}^{s} \gamma_i(P_{F_i}(l) - P_{F_{i-1}}(l))
$$

When calculating the contribution from $O_P(n_1)$, we look at sub-line bundles. But here, we study quotient bundles, which is more convenient.

Thus, we have

Lemma 11. With notations as above, then

$$
\mu^L(\xi, \lambda) = n_1 \gamma(\sigma) - n_2 \sum_{i=1}^{s} \gamma_i(P_{F_i}(l) - P_{F_{i-1}}(l)).
$$

Lemma 12. For l large as in (4.3), let $\xi = ([\sigma],[q]) \in \bar{Z}$, be a point with associated morphism $\alpha : E_0 \to E$. Then the following two conditions are equivalent:

(i) ξ is GIT-stable with respect to L;

(ii) For any nontrivial proper subspace $W < V$, let $G = q(W \otimes O_X(-m))$. Then

$$
P_G(l) > \frac{n_1}{n_2} \left(\epsilon_W(\sigma) - \frac{\dim W}{\dim V} \right) + P(l) \frac{\dim W}{\dim V}. \quad (4.4)
$$

Here, $\epsilon_W(\sigma)$ is either 1 or 0 depending on whether W contains $\text{im} \sigma$ or not.
Proof. Suppose ξ is GIT-stable. Let W and G be as in the statement. Let $k = \dim W$.

Consider the one parameter subgroup given as follows

$$
\chi(t) = \begin{pmatrix} t^{k-P(m)}\text{id}_k \\ t^k\text{id}_{P(m)-k} \end{pmatrix},
$$

where t acts on W by multiplying $t^{k-P(m)}$ and its complementary space by multiplying t^k. If $\text{im}\, \sigma \subset W$, then by Theorem HM and Lemma 11,

$$
0 < \mu^L(\xi, \lambda) = n_1(k - P(m)) - n_2 k P(l) + n_2 P(m) P_G(l).
$$

Recall that $\dim V = P(m)$. Thus, in this case,

$$
P_G(l) > \frac{n_1}{n_2} \left(1 - \frac{\dim W}{\dim V}\right) + P(l) \frac{\dim W}{\dim V}.
$$

If $\text{im}\, \sigma \notin W$, then

$$
0 < \mu^L(\xi, \lambda) = n_1 k - n_2 k P(l) + n_2 P(m) P_G(l).
$$

In this case,

$$
P_G(l) > -\frac{n_1}{n_2} \frac{\dim W}{\dim V} + P(l) \frac{\dim W}{\dim V}.
$$

We thus have proven one direction of the statement.

Suppose we have the inequality (4.4). We use the notations in the discussion right before
Lemma 11. The inequality, combined with Lemma 11, implies

\[\mu^L(\xi, \lambda) = n_1 \gamma(\sigma) - n_2 \gamma_s P_E(l) + n_2 \sum_{i=1}^{\gamma-1} (\gamma_{i+1} - \gamma_i) P_F_i(l) \]

\[> n_1 \gamma(\sigma) - n_2 \gamma_s P(l) + n_2 \sum_{i=1}^{\gamma(\sigma)-1} \left(\frac{n_1}{n_2} \cdot \frac{\dim W_i}{\dim V} + P(l) \right) \frac{\dim W_i}{\dim V} \]

\[+ n_2 \sum_{i=1}^{\gamma(\sigma)-1} \left(\frac{n_1}{n_2} \left(1 - \frac{\dim W_i}{\dim V} \right) + P(l) \right) \frac{\dim W_i}{\dim V} \]

\[= n_1 \gamma(\sigma) - n_2 \gamma_s P(l) + \left(\frac{n_1}{P(m)} + \frac{n_2 P(l)}{P(m)} \right) \sum_{i=1}^{\gamma(\sigma)-1} (\gamma_{i+1} - \gamma_i) \dim W_i \]

Moreover,

\[\sum_{i=1}^{\gamma-1} (\gamma_{i+1} - \gamma_i) \dim W_i = \gamma_s \dim W_{s-1} - \sum_{i=1}^{\gamma-1} \gamma_i \dim V_i - \gamma_1 \dim W_1 \]

\[= \gamma_s \dim W_{s-1} + \gamma_s \dim V_s - \sum_{i=1}^{\gamma} \gamma_i \dim V_i \]

\[= \gamma_s P(m). \]

Thus, \(\mu^L(\xi, \lambda) > 0 \). Therefore, \(\xi \) is GIT-stable. \(\square \)

GIT-semistability can also be characterized by the corresponding weak inequality.

Now, let

\[\frac{n_1}{n_2} = \frac{P(l)}{2r}. \quad (4.5) \]

We fix an \(l \) such that

(i) (4.3) holds;

(ii) (4.4) holds if and only if it holds as an inequality of polynomials in \(l \):

\[P_G > n_1 n_2 \left(\frac{\dim W(\sigma)}{\dim V} \right) + P \frac{\dim W}{\dim V}. \quad (4.6) \]

We can ask for the last condition because the family of such \(G \)'s is bounded.

31
Corollary 1. If \(([\sigma],[q]) \in \bar{Z}\) is GIT-semistable, then \(H^0(q(m)) : V \to H^0(E(m))\) is injective and for any coherent subsheaf \(G \subset E\) such that \(\dim G \leq d - 1\), \(H^0(G(m)) = 0\).

In defining \(Z\), we require the quotient to be pure. When we take the closure, we may include non-pure quotients. But this lemma imposes restrictions.

Proof. Let \(W\) be the kernel of \(H^0(q(m)) : V \to H^0(E(m))\), then the image

\[G = q(W \otimes \mathcal{O}_X(-m)) = 0. \]

The inequality (4.6) forces \(\dim W\) to be zero, otherwise the right-hand side of the inequality is a positive polynomial while the left-hand side is 0.

Suppose \(G \subset E\) such that \(\dim G \leq d - 1\). Let \(W = H^0(G(m))\), then \(q(W \otimes \mathcal{O}_X(-m)) \subset G\).

By the inequality (4.6), we have \(\dim W = 0\), otherwise the right-hand side will be a positive polynomial of degree no less than \(d\), while the left hand side is of degree \(\leq d - 1\).

We are ready to relate the \(\delta\)-stability condition to the GIT-stability condition.

Proposition 4. Let \(([\sigma],[q])\) and \((E,\alpha)\) be as in the previous lemma. The following two assertions are equivalent

(i) \(([\sigma],[q])\) is GIT-(semi)stable with respect to \(L\);

(ii) \((E,\alpha)\) is (semi)stable and \(q\) induces an isomorphism \(V \sim H^0(E(m))\).

Recall that when \(\deg \delta \geq \deg P\), there are no strictly semistable pairs.

Proof. First, assume that a point \(([\sigma],[q]) \in \bar{Z}\) is GIT-semistable. Denote the quotient by \(q : V \otimes \mathcal{O}(-m) \to E\). Then by Corollary 1, we know that the induced linear map \(V \to H^0(E(m))\) is injective. Since \(([\sigma],[q])\) is in the closure of \(Z\), \(E\) can be deformed to a pure sheaf. By [HL10, Proposition 4.4.2], there is an exact sequence

\[0 \to T_{d-1}(E) \to F \to 0 \]
where $T_{d-1}(E)$ is the maximal dimension $d - 1$ subsheaf of E and such that $P_F = P_E = P$.

According to Corollary 1, the exact sequence provides an injective linear map

$$H^0(E(m)) \rightarrow H^0(F(m)).$$

For any dimension d quotient $\pi : F \rightarrow F''$, let G be the kernel of $\pi \circ \phi$

$$0 \rightarrow G \rightarrow E \xrightarrow{\pi \circ \phi} F'' \rightarrow 0.$$

Let $W = V \cap H^0(G(m))$. Then we have

$$h^0(F''(m)) \geq h^0(E(m)) - h^0(G(m)) \geq \dim V - \dim W. \quad (4.7)$$

Let $r'' = r(F'')$. Let's consider the leading coefficients of two sides of (4.4), viewed as polynomials in l. (This is where the argument diverges, depending on the degree of δ. Here, we focus on the case where $\deg \delta \geq d$.) Then

$$(2r(G) - \epsilon_W(\sigma)) \dim V \geq (2r - 1) \dim W. \quad (4.8)$$

Combining (4.7, 4.8), we have

$$\frac{h^0(F''(m))}{2r'' - \epsilon(\pi \circ \phi \circ \alpha)} \geq \frac{\dim V}{2r - 1} \cdot \frac{2r'' - (1 - \epsilon_W(\sigma))}{2r'' - \epsilon(\pi \circ \phi \circ \alpha)} \geq \frac{P(m)}{2r - 1}$$

To prove the second inequality, notice that, when $\epsilon(\pi \circ \phi \circ \alpha) = 0$, $\im \alpha \subset G$. Therefore $\im \sigma \subset H^0(G(m))$. Thus, $\im \sigma \subset W$.

According to Lemma 10, the pair $(F, \phi \circ \alpha)$ is semistable. Therefore, by our choice of m,
We have the following commutative diagram

\[
\begin{array}{ccc}
V \otimes \mathcal{O}_X(-m) & \xrightarrow{\sim} & H^0(E(m)) \otimes \mathcal{O}_X(-m) \xrightarrow{\sim} \xrightarrow{\sim} H^0(F(m)) \otimes \mathcal{O}_X(-m) \\
\downarrow^q & & \downarrow^\phi \\
E & \xrightarrow{\sim} & F
\end{array}
\]

So, \(\phi \) is surjective. Since they have the same Hilbert polynomial, it is an isomorphism. Therefore, \((E, \alpha)\) is a semistable pair.

Next, we assume that \((E, \alpha)\) is semistable, thus stable, and \(q(m)\) induces an isomorphism between global sections. For any nontrivial proper subspace \(W < V\), let \(G = q(W \otimes \mathcal{O}(-m))\) and \((G, \alpha')\) the corresponding sub-pair. If \((G, \alpha') = (E, \alpha)\), the inequality in Lemma 12 holds. Assume that \((G, \alpha')\) is a proper sub-pair. According to Lemma 10, we have

\[
\frac{h^0(G(m))}{2r(G) - \epsilon(\alpha')} < \frac{h^0(E(m))}{2r - 1}.
\]

From the commutative diagram

\[
\begin{array}{ccc}
W & \xrightarrow{\sim} & H^0(G(m)) \\
\downarrow & & \downarrow \\
V & \xrightarrow{\sim} & H^0(E(m))
\end{array}
\]

we know that \(\dim W \leq h^0(G(m))\). Thus,

\[
\frac{\dim W}{2r(G) - \epsilon(\alpha')} < \frac{h^0(E(m))}{2r - 1}.
\]

Therefore,

\[
r(G) > \frac{1}{2} \epsilon(\alpha') - \frac{1}{2} \cdot \frac{\dim W}{\dim V} + \frac{\dim W}{\dim V},
\]

which implies the inequality in Lemma 12, since \(\epsilon(\alpha') \geq \epsilon_W(\sigma)\). Hence, \([(\sigma), [q])\) is GIT-stable.

We still need the following lemma, which will help us identify closed orbits. A pair is
polystable if it is isomorphic to a direct sum of stable pairs, degenerate or not, with the same reduced Hilbert polynomial.

Lemma 13. The closures in \bar{Z}^{ss} of orbits of two points, $([\sigma_1],[R_1])$ and $([\sigma_2],[R_2])$, intersect if and only if their associated semistable pairs (E_1,α_1) and (E_2,α_2) have the same Jordan-Hölder factors. The orbit of a point $([\sigma],[q])$ is closed if and only if the associated pair (E,α) is polystable.

The proof is similar to that of [HL10, Theorem 4.3.3], using the following lemma on semicontinuity.

Lemma 14 (Semicontinuity). Suppose (\mathcal{F},α) and (\mathcal{G},β) over $X_T = T \times X$ are two flat families of pairs, with Hilbert polynomials $P_{\mathcal{F}}$ and $P_{\mathcal{G}}$, parametrized by a scheme T of finite type over k. Then, the following function is semicontinuous:

$$t \mapsto \dim_k \text{Hom}_{(t) \times X}((\mathcal{F}_t,\alpha_t), (\mathcal{G}_t,\beta_t)).$$

The proof is modified from that of [HL95b, Lemma 3.4].

Proof. The space $\text{Hom}((\mathcal{F}_t,\alpha_t), (\mathcal{G}_t,\beta_t))$ is related to the pullback in the following diagram

$$
\begin{array}{c}
C_t \xrightarrow{\alpha_t} k \\
\downarrow \\
\text{Hom}(\mathcal{F}_t,\mathcal{G}_t) \xrightarrow{\text{can}} \text{Hom}(E_0,\mathcal{G}_t)
\end{array}
$$

in the sense that it satisfies the following equality

$$
\dim \text{Hom}((\mathcal{F}_t,\alpha_t), (\mathcal{G}_t,\beta_t)) = \dim C_t - 1 + \epsilon(\beta_t).
$$

By our flatness assumption, β_t is either always zero or never zero. Thus, it is enough to show that C_t is a fiber of a common coherent \mathcal{O}_T-module, as t varies.

Since the question is local on T, assume $T = \text{Spec} \ A$, where A is a k-algebra.
It is shown in the proof of [HL95b, Lemma 3.4] that, there is a bounded above complex $M_{E_0}^\bullet$ of finite type free A-modules, such that for any A-module M,

$$h^i(M_{E_0}^\bullet \otimes_A M) \cong \Ext^i_{X_T}(\pi_X^* E_0, \mathcal{G} \otimes_A M). \quad (4.9)$$

Similarly, there is such an M_{F}^\bullet that

$$h^i(M_{F}^\bullet \otimes_A M) \cong \Ext^i_{X_T}(\mathcal{F}, \mathcal{G} \otimes_A M). \quad (4.10)$$

The morphism α induces a morphism of complexes, which is still denoted as $\alpha : M_{F}^\bullet \to M_{E_0}^\bullet$. The morphism β induces a morphism $\beta : A \to M_{E_0}^\bullet$. Thus, there is a morphism

$$\psi = (\alpha, -\beta) : M_{F}^\bullet \oplus A \to M_{E_0}^\bullet.$$

Then the mapping cone $C(\psi)$ fits in the following distinguished triangle

$$C(\psi)[-1] \to M_{F}^\bullet \oplus A \to M_{E_0}^\bullet \to C(\psi).$$

Taking the long exact sequence, we have

$$0 \to h^{-1}(C(\psi)) \to \Hom_{X_T}(\mathcal{F}, \mathcal{G}) \oplus A \to \Hom_{X_T}(\pi_X^* E_0, \mathcal{G}) \to$$

Thus, we have the following fiber diagram

$$\begin{array}{ccc}
\Hom_{X_T}(\mathcal{F}, \mathcal{G}) & \xrightarrow{\alpha} & \Hom_{X_T}(\pi_X^* E_0, \mathcal{G}) \\
\downarrow & & \downarrow \\
0 & \to & h^{-1}(C(\psi)) \to \to A \\
\end{array}$$

\[\xrightarrow{\beta} \]
Therefore, together with (4.9,4.10) and the isomorphism

\[\text{Ext}^i_X(\mathcal{F}, \mathcal{G} \otimes k(t)) \cong \text{Ext}^i_Y(\mathcal{F}_t, \mathcal{G}_t), \]

we know that \(C_t \cong h^{-1}(C(\psi)) \otimes k(t) \). This finishes the proof. \(\square \)

We can now prove the existence of the moduli space.

Proof of Theorem 1. Let

\[S = S_{E_0}(P, \delta) = \bar{Z}^{ss} \sslash SL(V) \]

be the GIT quotient. This is a projective scheme. We will show that this is the coarse moduli space of S-equivalence classes of semistable pairs.

Suppose we are given a family of semistable pairs parametrized by \(T \)

\[\beta : \pi_X^* E_0 \to \mathcal{F}. \]

Let \(\pi \) be the projection from \(T \times X \) onto \(T \). Let \(m \) be chosen as before, then \(\pi_*(\mathcal{F}(m)) \) is locally free of rank \(P(m) = \dim V \) and we acquire a morphism over \(T \)

\[\pi_*(\beta(m)) : \pi_* (\pi_X^* E_0(m)) \to \pi_*(\mathcal{F}(m)). \]

Therefore, there is an open affine cover \(T = \cup T_i \), such that over each \(T_i \), \(\pi_*(\mathcal{F}(m))|_{T_i} \) is free of rank \(P(m) \). Choose an isomorphism over \(T_i \)

\[\omega_i : V \otimes \mathcal{O}_{T_i} \to \pi_*(\mathcal{F}(m))|_{T_i}. \]

Then \(\omega_i^{-1} \circ \pi_*(\beta(m)) \) induces a morphism \(T_i \to \mathbb{P} \). Also, the quotient

\[\text{ev} \circ \pi^*(\omega_i) : V \otimes \mathcal{O}_X(-m) \xrightarrow{\cong} \pi^*(\mathcal{F}(m)) \otimes \mathcal{O}_X(-m) \to \mathcal{F} \]
over $T_i \times X$ induces a morphism $T_i \to Q$. Thus, they induce a morphism $f_i : T_i \to \mathbb{P} \times Q$. By the definition of Z and Proposition 4, f_i factors through \bar{Z}^{ss}. Therefore, we obtain unambiguously a morphism

$$f_\beta : T \to S.$$

Thus, we have a natural transformation

$$S = S_E(P, \delta) \to \text{Mor}(-, S).$$

Suppose there is a natural transformation

$$S \to \text{Mor}(-, N). \quad (4.11)$$

Let $T = \bar{Z}^{ss}$. Universal families (4.1, 4.2) induce

$$H^0(E_0(m)) \otimes \mathcal{O}_X(-m) \to V \otimes \mathcal{O}_\mathbb{P}(1) \otimes \mathcal{O}_X(-m) \to \mathcal{E} \otimes \mathcal{O}_\mathbb{P}(1).$$

Over T, the composition induces a family

$$\pi^*_X E_0 \to \mathcal{E} \otimes \mathcal{O}_\mathbb{P}(1), \quad (4.12)$$

thus an element in $S(T)$. This in turn produces a map $T = \bar{Z}^{ss} \to N$. Because the transformation (4.11) is natural, this map is $\text{SL}(V)$-equivariant, with the action on N being trivial. According to properties of a quotient, the map factors uniquely through S. Therefore, we have the following commutative diagram of functors

$$
\begin{array}{ccc}
S & \longrightarrow & \text{Mor}(-, S) \\
& \downarrow & \\
& \text{Mor}(-, N). &
\end{array}
$$

38
Moreover, closed points in S are in bijection with S-equivalence classes of semistable pairs, according to Lemma 13. Thus, S is the coarse moduli space.

Let us consider the open set $\bar{Z}^s \subset \bar{Z}^{ss}$ of stable points. The geometric quotient

$$\bar{Z}^s \to \bar{Z}^s/\text{SL}(V) = S^{s}_{E_{0}}(P, \delta) = S^s$$

provides a quasi-projective scheme parametrizing equivalence classes of stable pairs. We shall prove this quotient to be a principal $\text{PGL}(V)$-bundle. It is enough to show that the stabilizers are products of the identity matrix and roots of unity.

Suppose a point $([\sigma], [q]) \in \bar{Z}^s$ gives rise to a stable pair $\alpha : E_0 \to E$ and $([\sigma], [q])$ is fixed by $g \in \text{SL}(V)$, that is, $[\sigma] = [g^{-1} \circ \sigma] [q] = [q \circ g]$. Then there is a scalar $a \in k^*$, such that $g^{-1} \circ \sigma = a\sigma$, and there is an isomorphism $\phi : E \to E$, such that $\phi \circ q = q \circ g$. Therefore,

$$\phi \circ \alpha \circ \text{ev} = a\alpha \circ \text{ev} : H^0(E_0(m)) \otimes \mathcal{O}_X(-m) \to E.$$

So, $\phi \circ \alpha = a\alpha$. Thus, ϕ is a multiplication by a nonzero scalar, by Lemma 7. In the following diagram

$$\begin{array}{ccc}
V & \xrightarrow{H^0(q(m))} & H^0(E(m)) \\
g \downarrow & & \downarrow H^0(\phi(m)) \\
V & \xrightarrow{H^0(q(m))} & H^0(E(m)),
\end{array}$$

the horizontal arrows are isomorphisms and the right vertical arrow is a multiplication by a nonzero scalar. Therefore, g is also a multiplication by a nonzero scalar. Because g lies in $\text{SL}(V)$, it is the product of a root of unity and the identity matrix.

In the family (4.12), $\mathcal{E} \otimes \mathcal{O}_{\mathbb{P}}(1)$ is $\text{SL}(V)$-equivariant. Although the actions of the center of $\text{SL}(V)$ on $\mathcal{O}_{\mathbb{P}}(1)$ and \mathcal{E} are not trivial, its action on $\mathcal{E} \otimes \mathcal{O}_{\mathbb{P}}(1)$ is. Thus, $\mathcal{E} \otimes \mathcal{O}_{\mathbb{P}}(1)$ is $\text{PGL}(V)$-equivariant. Therefore, the restriction of (4.12) to $\bar{Z}^s \times X$ descends to $S^s \times X$ to give a universal family of pairs. Hence, S^s represents the functor $S^{s}_{E_{0}}(P, \delta)$. \hfill \square
This section is devoted to the proof of Theorem 2, following [HL10, Ina02]. In 5.1, we will outline the construction of the obstruction class and identify the deformation space. In 5.2, we will fill in the proofs.

5.1. Constructions

Suppose \((E, \alpha)\) is a stable pair and

\[
0 \to K \to B \xrightarrow{\sigma} A \to 0
\]

is a short exact sequence, where \(A, B \in \text{Art}_k\), such that \(m_B K = 0\). Suppose

\[
\alpha_A : E_0 \otimes A \to E_A
\]
over $X_A = X \times \text{Spec } A$ is a (flat) extension of (E, α). Let

$$I_A^\bullet = \{ E_0 \otimes A \to E_A \}$$

denote the complex positioned at 0 and 1. We would like to extend (E_A, α_A) to a pair (E_B, α_B) over X_B. This is similar to deforming a sheaf or a perfect complex. But we need to fix E_0.

We take two locally free resolutions $P^\bullet \sim \to E_0$ and $Q^\bullet_A \sim \to E_A$ and lift α_A to a morphism of complexes $\alpha_A^\bullet : P^\bullet \otimes A \to Q^\bullet_A$. Then, we have the following commutative diagram

$$
\begin{array}{c}
\cdots \xrightarrow{d_A^2} P^{-2} \otimes A \xrightarrow{d_A^1} P^{-1} \otimes A \xrightarrow{d_A^0} P^0 \otimes A \xrightarrow{\alpha^0_A} E_0 \otimes A \xrightarrow{\alpha_A} E_A \xrightarrow{\alpha_A} 0 \\
\xrightarrow{d_A^2} Q^{-2}_A \xrightarrow{d_A^1} Q^{-1}_A \xrightarrow{d_A^0} Q^0_A \xrightarrow{\alpha_A} E_A \xrightarrow{\alpha_A} 0,
\end{array}
$$

where

$$P^i = V^i \otimes O_X(-m_i) \quad \text{and} \quad Q^i_A = W^i \otimes O_{X_A}(-n_i). \quad \tag{5.1}$$

Here, V^i and W^i are vector spaces and $m_i, n_i \in \mathbb{N}$. Then, $Q^\bullet = Q^\bullet_A \otimes_A k$ is a resolution of E, because E_A is flat over A.

We can view the morphism α_A as a morphism between complexes concentrated at degree 0, then I_A^\bullet can be viewed as a mapping cone $I_A^\bullet \cong C(\alpha_A)[-1] \cong C(\alpha_A^\bullet)[-1]$. For the sake of notations, we write down the mapping cone explicitly:

$$
\cdots \to P^{-1} \otimes A \oplus Q^{-2}_A \xrightarrow{d_A^2} P^0 \otimes A \oplus Q^{-1}_A \xrightarrow{d_A^1} Q^0_A \to 0,
$$

where

$$d_A^i = \begin{pmatrix}
-d_A^{i+1} \otimes A & 0 \\
\alpha_A^{i+1} & d_A^i_{Q_A}
\end{pmatrix}. \quad \tag{5.2}$$

We lift d_A^i to $d_{Q_A}^i$, getting a sequence $(Q^i_B, d_{Q_B}^i)_{i \leq 0}$, where $Q^i_B = W^i \otimes O_{X_B}(-n_i)$. We
also lift $\alpha_A^i: P^i \otimes A \to Q_A^i$ to $\alpha_B^i: P^i \otimes B \to Q_B^i$. We then obtain a sequence

$$
(P^{i+1} \otimes B \oplus Q_B^i, d_B^i)_{i \leq 0},
$$

(5.3)

where d_B^i is similar to d_A^i in (5.2). This is not necessarily a complex:

$$
d_B^i \circ d_B^{i-1} =
\begin{pmatrix}
0 & 0 \\
-\alpha_B^{i+1} \circ (d_p^i \otimes B) + d_Q^i \circ \alpha_B^i & d_Q^i \circ d_Q^{i-1}
\end{pmatrix}
$$

(5.4)

may not vanish. But when it is a complex, $(Q_B^\bullet, d_{Q_B}^\bullet)$ forms a complex and $\alpha_B^\bullet: P^\bullet \otimes B \to Q_B^\bullet$ is a morphism of complexes. Thus,

$$
H^0(\alpha_B^\bullet): E_0 \otimes B \to H^0(Q_B^\bullet, d_{Q_B}^\bullet)
$$

provides a flat extension of α_A, according to Lemma 15, which is in the next subsection.

The lower row of (5.4) constitutes a map

$$
P^\bullet[1] \otimes B \oplus Q_B^\bullet \to Q_B^\bullet[2].
$$

(5.5)

When restricted to X_A, it becomes zero. Moreover, $m_B K = 0$. The map above induces a map\(^1\)

$$
(\omega_p^\bullet, \omega_Q^\bullet): C(\alpha^\bullet) \to Q_B^\bullet[2] \otimes_B K \cong Q^\bullet[2] \otimes_k K.
$$

(5.6)

We claim that $(\omega_p^\bullet, \omega_Q^\bullet)$ is a morphism of complexes, which will be proven, Lemma 17. This induces a class, which will be shown to be the obstruction class,

$$
\text{ob}(\alpha_A, \sigma) = [(\omega_p^\bullet, \omega_Q^\bullet)] \in \text{Hom}_{K(X)}(C(\alpha^\bullet), Q^\bullet[2] \otimes_k K).
$$

(5.7)

To identify $\text{Hom}_{K(X)}(C(\alpha^\bullet), Q^\bullet[2] \otimes K)$ with $\text{Ext}^1(I^\bullet, E \otimes K)$ in the theorem, we only

\(^1\)The argument to deduce (5.6) from (5.5) will be applied repeatedly.
need to take (5.1) to be very negative such that \(H^i(X, E(m_j)) = 0 \) and \(H^i(X, E(n_j)) = 0 \), \(\forall i > 0 \) and \(j \leq 0 \). Then

\[
\text{Ext}^1(I^\bullet, E \otimes K) \cong \text{Hom}_{K(X)}(C(\alpha^\bullet), E[2] \otimes K) \cong \text{Hom}_{K(X)}(C(\alpha^\bullet), Q^\bullet[2] \otimes K).
\]

Suppose we have two extensions \(\alpha_B : E_0 \otimes B \to E_B \) and \(\beta_B : E_0 \otimes B \to F_B \), which arise from liftings

\[
\begin{align*}
\{d^i_{E_B} : Q_B^i \to Q_B^{i+1}, \alpha^i_B : P^i \otimes B \to Q_B^i\} \\
\text{and} \quad \{d^i_{F_B} : Q_B^i \to Q_B^{i+1}, \beta^i_B : P^i \otimes B \to Q_B^i\}.
\end{align*}
\]

The differences \(d^i_{E_B} - d^i_{F_B} \) and \(\alpha^i_B - \beta^i_B \) induce a morphism of complexes

\[
(f^\ast_P, f^\ast_Q) : C(\alpha^\bullet) \to Q^\bullet[1] \otimes K.
\]

This induces a class

\[
v = [(f_P^\ast, f_Q^\ast)] \in \text{Hom}_{K(X)}(C(\alpha^\bullet), Q^\bullet[1] \otimes K) \cong \text{Ext}^1(I^\bullet, E \otimes K).
\]

Conversely, given \(\alpha_B \) and \((f^\ast_P, f^\ast_Q) \), we can produce another extension \(\beta_B \).

Moreover, \(\alpha_B \) and \(\beta_B \) are equivalent if and only if \(v = 0 \).

5.2. Proofs

In this sub-section, we fill in the proofs of several claims we made in 5.1. We will assume the independence of choices in 5.2.1 and provide proofs of independence in 5.2.2. To simplify the notation, we will sometimes omit the superscripts in maps between complexes, such as
5.2.1 Obstruction classes

We first show that ob(α_A, σ) defined in (5.7) is an obstruction class.

Suppose an extension (E_B, α_B) exists. The definition of ob(α_A, σ) does not depend on the choice of the resolution $Q_A \cdot$. We can assume (E_B, α_B) arises by lifting $d_{Q_A}^i$ and α_A^i, making Q_B^i into a complex and α_B^i a morphism of complexes. Then, $(\omega_P^i, \omega_Q^i) = 0$. Thus, ob$(\alpha_A, \sigma) = 0$.

Conversely, suppose ob$(\alpha_A, \sigma) = 0$. It is enough to show that $(\omega_P^i, \omega_Q^i) = 0$, after possible modifications of the liftings. The vanishing of ob(α_A, σ) is equivalent to that (ω_P^i, ω_Q^i) is homotopic to 0. Let (g_P^i, g_Q^i) be a homotopy. By abuse of notation, let ι denote inclusions

$$\iota : Q_B^i \otimes K \to Q_B^i.$$

Similarly, π denotes the corresponding quotients,

$$\pi : P^i \otimes B \to P^i \quad \text{and} \quad \pi : Q_B^i \to Q^i.$$

We can replace α_B and d_{Q_B} by

$$\alpha_B - \iota \circ g_P \circ \pi \quad \text{and} \quad d_{Q_B} - \iota \circ g_Q \circ \pi,$$

then the new (ω_P^i, ω_Q^i) is zero.

The following well-known lemma is central to our argument. For completeness, we give a proof here.

Lemma 15. Let $(Q_A^i, d_{Q_A}^i)$ be a sequence of the form $Q_A^i \cong W^i \otimes O_{X_A}(-n_i), i \leq 0$, such that

$$(Q_A^i, d_{Q_A}^i) \otimes_A k \cong (Q^i, d^i)$$
is a resolution of E. If $(Q^*_A, d^*_Q_A)$ is a complex, then it is exact except at the 0-th place and the cohomology $H^0(Q^*_A, d^*_Q_A)$ is an extension of E flat over A.

Proof. There is a short exact sequence of complexes

$$0 \to Q^*_A \otimes_A m_A \to Q^*_A \to Q^* \to 0.$$

First, let n be the least integer such that $m^n_A = 0$. We shall show that for $0 \leq i \leq n$, $Q^*_A \otimes_A A/m_i^i$ is exact except at the 0-th place, by induction on i decreasingly. Tensor Q^*_A over A with the short exact sequence

$$0 \to m_n^m \to m_{n-2}^m \to m_{n-2}/m_n^m \to 0,$$

whose last term is a direct sum of copies of k. On the other hand, $Q^*_A \otimes_A m_i^i \cong Q^* \otimes_k m_i^i$. We deduce that the complexes $Q^*_A \otimes_A m_i^i$ and $Q^*_A \otimes_A m_i^{n-2}/m_i^{n-1}$ are exact except at the 0-th places. So, from the associated long exact sequence, $Q^*_A \otimes_A m_i^{n-2}$ is also exact except at the 0-th place. Inductively, we can prove this for Q^*_A.

Next, let $E_A = H^0(Q^*_A, d^*_Q_A)$. We shall show that $E_A \otimes A/m_i^i$ is flat for $1 \leq i \leq n$, by induction on i.

Of course $E_A \otimes_A A/m_A \cong E$ is flat over $A/m_A \cong k$. Tensor the short exact sequence

$$0 \to m_A/m_A^2 \to A/m_A^2 \to A/m_A \to 0 \quad (5.9)$$

by Q^*_A over A. Since the ideal m_A/m_A^2 is square zero, we have the short exact sequence of complexes

$$0 \to Q^* \otimes_k m_A/m_A^2 \to Q^*_A \otimes_A A/m_A^2 \to Q^* \to 0.$$

The associated long exact sequence degenerates to

$$0 \to E \otimes_A m_A^2 \to E_A \otimes A/m_A^2 \to E \to 0. \quad (5.10)$$
Therefore, $E_A \otimes_A A/m_A^3$ is flat over A/m_A^2, according to Lemma 16.

Replace (5.9) by

$$0 \to m_A^2/m_A^3 \to A/m_A^3 \to A/m_A^2 \to 0,$$

we can repeat this argument. Inductively, we can prove E_A is flat over A.

Similar to (5.10), we also have the short exact sequence

$$0 \to E_A \otimes m_A \to E_A \to E \to 0.$$

So, E_A is a extension of E. \hfill \Box

For the reader’s convenience, we include the following basic lemma about flatness. For a proof, see [Har10, Proposition 2.2].

Lemma 16. Let $B \to A$ be a surjective homomorphism of noetherian rings whose kernel K is square zero. Then a B-module M' is flat over B if and only if $M = M' \otimes_B A$ is flat over A and the natural map $M \otimes_A K \to M'$ is injective.

Lemma 17. (5.6) is a morphism of complexes.

Proof. We have two equalities

$$- \alpha_B \circ d_P \otimes B + d_{Q_B} \circ \alpha_B = \iota \circ \omega_P \circ \pi \quad \text{and} \quad d_{Q_B} \circ d_{Q_B} = \iota \circ \omega_Q \circ \pi. \quad (5.11)$$

The map (5.6) is indeed a morphism: one can show that

$$\iota \circ \left(d_Q \otimes K \circ (\omega_P, \omega_Q) - (\omega_P, \omega_Q) \begin{pmatrix} -d_P & 0 \\ \alpha & d_Q \end{pmatrix} \right) \circ \pi = 0.$$

Because ι is injective and π is surjective, (ω_P, ω_Q) commutes with differentials. \hfill \Box

\hfill 2\text{The trick using } \iota \text{ and } \pi \text{ will be applied repeatedly.}
5.2.2 Obstructions – independence of choices

We now show that the ob(α_A, σ) is independent of the various choices we have made: α^*_A, α^*_B, d^*_Q, and Q^*_A.

To start, if we choose a different lifting α^*_A of α_A, then (ω^*_P, ω^*_Q) will only differ by a homotopy.

We next show that the morphism (ω^*_P, ω^*_Q) is independent of liftings α^*_B and d^*_Q, modulo homotopy.

Let α'_B and d'_Q be different liftings, giving rise to (ω'_P, ω'_Q). The differences $\alpha_B - \alpha'_B$ and $d_Q - d'_Q$ induce a map, which will be shown to be a homotopy,

$$ (h_P^*, h_Q^*) : P^*[1] \oplus Q^*[1] \rightarrow Q^*[1] \otimes_k K. $$

The related equalities are

$$ \iota \circ h_P \circ \pi = \alpha_B - \alpha'_B \quad \text{and} \quad \iota \circ h_Q \circ \pi = d_Q - d'_Q. \quad (5.12) $$

Then, combining (5.11) and (5.12), we obtain

$$ \omega_P - \omega'_P = -h_P \circ d_P + d_Q \otimes K \circ h_P + h_Q \circ \alpha, $$

$$ \omega_Q - \omega'_Q = d_Q \otimes K \circ h_Q + h_Q \circ d_Q. $$

Therefore,

$$ (\omega_P, \omega_Q) - (\omega'_P, \omega'_Q) = d_Q \otimes K \circ (h_P, h_Q) \begin{pmatrix} -d_P & 0 \\ \alpha & d_Q \end{pmatrix}, $$

which means (ω^*_P, ω^*_Q) and (ω'_P, ω'_Q) are homotopic.

Finally, we show the independence of Q^*_A.

47
Let \((R_A^\bullet, d_{R_A}^\bullet)\) be another very negative resolution of the form:

\[R_A^i = W^u \otimes \mathcal{O}_{X_A}(-n'_i). \]

Then there is a lifting of the identity map \(q_A^\bullet : Q_A^\bullet \to R_A^\bullet\), unique up to homotopy. Let

\[\beta_A^\bullet = q_A^\bullet \circ \alpha_A^\bullet : P^\bullet \otimes A \to R_A^\bullet. \]

Moreover, there is a morphism

\[\text{diag}(\text{id}, q_A^\bullet) : C(\alpha_A^\bullet) \to C(\beta_A^\bullet). \]

Lift \(q_A^\bullet\) and \(\beta_A^\bullet\) to \(q_B^\bullet : Q_B^\bullet \to R_B^\bullet\) and \(\beta_B^\bullet : P^\bullet \otimes B \to R_B^\bullet\). Then, we have a map of sequences

\[\text{diag}(\text{id}, q_B^\bullet) : P^\bullet[1] \otimes B \oplus Q_B^\bullet \to P^\bullet[1] \otimes B \oplus R_B^\bullet. \]

This fits in the following square, which is not necessarily commutative,

\[
\begin{array}{ccc}
P^\bullet[1] \otimes B \oplus Q_B^\bullet & \longrightarrow & Q_B^\bullet[2] \\
\downarrow \text{diag}(\text{id}, q_B^\bullet) & & \downarrow q_B^\bullet \\
P^\bullet[1] \otimes B \oplus R_B^\bullet & \longrightarrow & R_B^\bullet[2]
\end{array}
\] \quad (5.13)

Here, the two horizontal maps are as defined in (5.5). The square above induces

\[
\begin{array}{ccc}
P^\bullet[1] \oplus Q^\bullet & \longrightarrow & Q^\bullet[2] \otimes K \\
\downarrow \text{diag}(\text{id}, q^\bullet) & & \downarrow q^\bullet \\
P^\bullet[1] \oplus R^\bullet & \longrightarrow & R^\bullet[2] \otimes K
\end{array}
\]

To show that \(\text{ob}(\alpha_A, \sigma)\) is independent of the resolution, it is enough to show that the two compositions differ by a homotopy. This is because, if they differ by a homotopy, two
classes $[(\omega_P^*, \omega_Q^*)]$ and $[(\bar{\omega}_P^*, \bar{\omega}_R^*)]$ are identified via the isomorphism

$$\text{Hom}_{K(X)}(C(\alpha^*), Q^*[2] \otimes K) \cong \text{Hom}_{K(X)}(C(\beta^*), R^*[2] \otimes K).$$

Indeed, the difference $d_{R_B} \circ q_B - q_B \circ d_{Q_B}$ and $\beta_B - q_B \circ \alpha_B$ induce maps

$$\tau^*: Q^* \to R^*[1] \otimes K \quad \text{and} \quad \nu^*: P^* \to Q^* \otimes K.$$

There are the following equalities

$$d_{R_B} \circ q_B - q_B \circ d_{Q_B} = \iota \circ \tau \circ \pi \quad \text{and} \quad \beta_B - q_B \circ \alpha_B = \iota \circ \nu \circ \pi. \quad (5.14)$$

Combining (5.11) and (5.14), we know that the difference of two compositions in (5.13) is

$$\iota \circ \bar{\omega}_P \circ \bar{\omega}_R \circ \text{diag}(\text{id}, q) - q \circ (\omega_P, \omega_Q) \circ \pi$$

$$= (-\beta_B \circ d_P \otimes B + d_{R_B} \circ \beta_B, d_{R_B} \circ d_{R_B} \circ q_B)$$

$$-q_B \circ (-\alpha_B \circ d_P \otimes B + d_{Q_B} \circ \alpha_B, d_{Q_B} \circ d_{Q_B})$$

$$= \iota \circ (-\nu \circ d_P + \tau \circ \alpha + d_R \otimes K \circ \nu, \tau \circ d_Q + d_R \otimes K \circ \tau) \circ \pi$$

$$= \iota \circ \left((\nu, \tau) \circ \begin{pmatrix} -d_P & 0 \\ \alpha & d_Q \end{pmatrix} + d_R \otimes K \circ (\nu, \tau) \right) \circ \pi.$$

Thus, (ν^*, τ^*) is a homotopy.

5.2.3 Deformations

Assume that the obstruction class $\text{ob}(\alpha_A, \sigma)$ vanishes.
Suppose there are two extensions:

\[\alpha_B : E_0 \otimes B \to E_B \quad \text{and} \quad \beta_B : E_0 \otimes B \to F_B. \]

Resolve \(E_B \) and \(F_B \) by two very negative complex with identical terms but different differentials: \((Q^*_B, d^*_E_B)\) and \((Q^*_B, d^*_F_B)\). Then, lift \(\alpha_B \) and \(\beta_B \):

\[
\begin{array}{ccc}
P^* \otimes B & \xrightarrow{\sim} & E_0 \otimes B \\
\downarrow \alpha^*_B & & \downarrow \alpha_B \\
(Q^*_B, d^*_E_B) & \xrightarrow{\sim} & E_B
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
P^* \otimes B & \xrightarrow{\sim} & E_0 \otimes B \\
\downarrow \beta^*_B & & \downarrow \beta_B \\
(Q^*_B, d^*_F_B) & \xrightarrow{\sim} & F_B
\end{array}
\]

The differences \(d^i_{E_B} - d^i_{F_B} \) and \(\alpha^i_B - \beta^i_B \) induce maps

\[
f^i_Q : Q^i \to Q^{i+1} \otimes K \quad \text{and} \quad f^i_P : P^i \to Q^i \otimes K.
\]

One can show that these provide a morphism of complexes

\[
(f_P^*, f_Q^*) : C(\alpha^*) \to Q^*[1] \otimes K. \tag{5.15}
\]

Thus, this induces a class \(v \) defined by

\[
v = [(f_P^*, f_Q^*)] \in \text{Ext}^1(I^*, E \otimes K).
\]

Conversely, if we are given an extension \((E_B, \alpha_B)\) and a class \(v \) represented by \((f_P, f_Q)\), then

\[
\beta_B = \alpha_B - \iota \circ f_P \circ \pi \quad \text{and} \quad d_{F_B} = d_{E_B} - \iota \circ f_Q \circ \pi
\]

produce a morphism of complexes \(P^* \otimes B \to (Q^*_B, d^*_F_B) \). This induces an extension of \((E_A, \alpha_A)\):

\[
(F_B, \beta_B) = (H^0(Q^*_B, d^*_F_B), H^0(\beta^*_B)).
\]

50
If we choose a different resolution R_B^* and define $(\tilde{f}_P^*, \tilde{f}_R^*)$ similarly as in (5.8), then $[(f_P^*, f_Q^*P)]$ and $[(\tilde{f}_P^*, \tilde{f}_R^*)]$ are identified under the isomorphism

$$\text{Hom}_{K(X)}(P^*[1] \oplus Q^*, Q^*[1] \otimes K) \cong \text{Hom}_{K(X)}(P^*[1] \oplus R^*, R^*[1] \otimes K).$$

So, v is independent of the resolution Q_B^*.

We next show that the difference of two equivalent extensions gives a zero class v. Indeed, suppose α_B and β_B are equivalent, then by Lemma 7, there is a constant $z \in B$ such that $\beta_B = z \alpha_B$. Denote the image of z in k as \bar{z}. We have proven that v is independent of resolutions. So, for our convenience, we take the same resolution Q_B^* for E_B and F_B, and take $\beta^* = z \alpha^*$. Then $f_Q^* = 0$. Furthermore, f_P^* in (5.8) is homotopic to zero via homotopy

$$(0, 1 - \bar{z}) : P^{i+1} \oplus Q^i \to Q^i \otimes K.$$

Thus, the associated $v = 0$.

It remains to prove that if (h_P^*, h_Q^*) is a homotopy between (f_P^*, f_Q^*) and zero, then α_B and β_B are equivalent. One can actually check that

(i) $\text{id} - \iota \circ h_Q \circ \pi : (Q_B^*, d_{E_B}^*) \to (Q_B^*, d_{F_B}^*)$ is a morphism of complexes;

(ii) $(\text{id} - \iota \circ h_Q \circ \pi) \circ \alpha_B = \beta_B - d_{F_B} \circ \iota \circ h_P \circ \pi - \iota \circ h_P \circ \pi \circ d_P \otimes B$.

Hence, there is a morphism ϕ commuting two families of stable pairs α_B and β_B. Therefore, by Lemma 7, this is an isomorphism.

51
In this section, we assume that \((X, \mathcal{O}_X(1))\) is a smooth projective surface, \(E_0\) is torsion free, \(P\) and \(\delta\) are of degree 1. We shall demonstrate that in these cases, the moduli space of stable pairs admits a virtual fundamental class, proving Theorem 3.

To show the existence of the virtual fundamental class, it suffices to show that the obstruction theory is perfect [BF97, LT98]. That is, there is a two term complex of locally free sheaves resolving the deformation and obstruction sheaves. In order to do this, we essentially need to show that there are no higher obstructions, which is guaranteed by the following lemma.

Lemma 18. Fix a stable pair \((E, \alpha)\). Then

\[
\Ext^i(I^\bullet, E) = 0, \quad \text{unless } i = 0, 1.
\]

Proof. The stable pair fits into an exact sequence

\[
0 \to K \to E_0 \to E \to Q \to 0,
\]
which can be written as a distinguished triangle

\[K \to I^\bullet \to Q[-1] \to K[1]. \]

Notice that \(K \) is torsion free and \(Q \) is 0-dimensional. Apply the functor \(\text{Hom}(-, E) \) to this triangle. The associated long exact sequence is

\[
0 \to \text{Hom}(Q, E) \to \text{Ext}^{-1}(I^\bullet, E) \to 0 \to \\
\text{Ext}^1(Q, E) \to \text{Hom}(I^\bullet, E) \to \text{Hom}(K, E) \to \\
\text{Ext}^2(Q, E) \to \text{Ext}^1(I^\bullet, E) \to \text{Ext}^1(K, E) \to \\
0 \to \text{Ext}^2(I^\bullet, E) \to \text{Ext}^2(K, E) \to 0
\]

Because \(Q \) is 0-dimensional and \(E \) is pure, \(\text{Hom}(Q, E) = 0 \). Therefore, \(\text{Ext}^{-1}(I^\bullet, E) = 0 \). The kernel \(K \) is torsion free, so \(\text{Ext}^2(K, E) \cong \text{Hom}(E, K \otimes \omega_X) \cong 0 \). Thus, \(\text{Ext}^2(I^\bullet, E) = 0 \). \hfill \Box

Using this lemma, the expected dimension of the moduli space can be easily calculated via Hirzebruch-Riemann-Roch, knowing invariants of \(E_0 \).

Now, let

\[\mathbb{I}^\bullet = \{ \pi_X^* E_0 \overset{\tilde{\alpha}}{\to} E \} \]

be the universal pair, according to Theorem 1. By Theorem 2, the deformation sheaf and the obstruction sheaf are calculated by

\[R\pi_* R\text{Hom}(\mathbb{I}^\bullet, E). \]

Take a finite complex \(P^\bullet \) of locally free sheaves resolving \(E \) and a finite complex \(Q^\bullet \) of very negative locally free sheaves resolving \(\mathbb{I}^\bullet \). Take a finite, very negative locally free resolution \(A^\bullet \) of \((Q^\bullet)^\vee \otimes P^\bullet \). Then

\[R\pi_* R\text{Hom}(\mathbb{I}^\bullet, E) \cong R\pi_* R\text{Hom}(Q^\bullet, P^\bullet) \cong R\pi_* A^\bullet. \]

(6.1)
Denote this complex as B^\bullet. By Grothendieck-Verdier duality [Har66, Con00],

$$B^\bullet = R\pi_* A^\bullet \cong R\pi_* R\text{Hom}(A^\nu \otimes \omega_X, \omega_X) \cong R\text{Hom}(R\pi_*(A^\nu \otimes \omega_X)[-2], \mathcal{O})$$

Moreover, notice that $R\pi_*(A^\nu \otimes \omega_X)$ is a complex of locally free sheaves, due to the negativity of A^j’s. Thus, B^\bullet is a complex of locally free sheaves as well. Denote the differentials as d^i’s.

Next, we show that B^\bullet can be truncated to degree 0 and 1. The cohomologies of B^\bullet concentrate at degree 0 and 1, by Lemma 18. Suppose $B^{i \geq 2}$ is the last term that is nonzero. Both B^i and B^{i-1} are locally free, then ker d^{i-1} is also locally free. Replace B^i by zero and B^{i-1} by ker d^{i-1}. We get a new complex of locally free sheaves, which is quasi-isomorphic to B^\bullet. Inductively, we can trim B^\bullet down to degree 1. On the other side, suppose $B^{j < 0}$ is the first term that is nonzero. Then, d^j is injective fiberwise. Therefore, coker d^j is flat [EGA61, (10.2.5), Chap. 0], thus locally free. Hence, we can replace B^{j-1} by zero and B^j by coker d^j to get a new complex of locally free sheaves. Inductively, B^\bullet becomes a complex concentrated in degree 0 and 1, with cohomologies the deformation sheaf and the obstruction sheaf. Namely, we have the following exact sequence on $S_{E_0}(P, \delta)$

$$0 \to \text{Def} \to B^0 \to B^1 \to \text{Obs} \to 0,$$

where B^0 and B^1 are locally free.

Therefore, the moduli space admits a virtual fundamental class.
In this chapter, we study examples of moduli spaces of dimension 1 stable pairs over K3 surfaces. Let \((X, \mathcal{O}_X(1))\) be a polarized K3 surface, \(P\) be a Hilbert polynomial of degree 1, and \(\delta\) be a positive polynomial of degree larger than 1. Let \(E_0\) be a fixed coherent sheaf over \(X\). Then a pair \((E, \alpha)\), such that \(P_E = P\), is stable if \(E\) is pure and \(\text{coker}\alpha\) has dimension 0, by Lemma 6.

Let \(H = c_1(\mathcal{O}(1)) \in H_2(X, \mathbb{Z})\). Suppose the schematic support of \(E\) has arithmetic genus \(h\). There are two discrete invariants of \(E\):\(^1\)

\[
\beta_h = c_1(E) \in H_2(X, \mathbb{Z}) \quad \text{and} \quad \chi(E) = 1 - h + d.
\] (7.1)

They are related to the Hilbert polynomial by \(P_E(m) = (\beta_h, H)m + 1 - h + d\). So, with the Hilbert polynomial fixed, there are only finitely many possible \(\beta_h\)'s. The moduli space decomposes as a disjoint union:

\[
S_{E_0}(P, \delta) = \bigsqcup_{\beta_h} S_{E_0}(\beta_h, 1 - h + d)
\]

\(^1\)There is a slight abuse of notation about \(\beta\) and \(d\). But they are unlikely to cause confusions.
where $S_{E_0}(\beta_h, 1 - h + d)$ denote the moduli space of stable pairs satisfying conditions (7.1).

Let C_h be a representative in the class β_h, then the linear system $|C_h| \cong \mathbb{P}^h$. Let

$$C_h \subset |C_h| \times X$$

be the universal curve.

When $E_0 \cong \mathcal{O}_X$, by [PT10, Proposition B.8],

$$S_{\mathcal{O}_X}(\beta_h, 1 - h + d) \cong C_h^{[d]}$$

where $C_h^{[d]}$ is the relative Hilbert scheme of points. If there is an ample line bundle H such that

$$C_h,H = \min\{L,H|L \in \text{Pic}(X), L.H > 0\},$$

then $S_{\mathcal{O}_X}(\beta_h, 1 - h + d)$ is a smooth scheme of dimension $h + d$, see [KY00, Lemma 5.117, Lemma 5.175] or [PT10, Proposition C.2].

The moduli space is not smooth in general for a higher rank E_0. For example, assume $E_0 \cong \mathcal{O}_X^\oplus 2$ and the stable pair $(E, \alpha : \mathcal{O}_X^\oplus 2 \to E)$ maps a summand \mathcal{O}_X to 0. Then, the deformation space of this stable pair is isomorphic to $\text{Hom}(\mathcal{O}_X \to E, E) \oplus H^0(E)$. The dimension of $\text{Hom}(\mathcal{O}_X \to E, E)$ is $h + d$, while $h^0(E)$ may vary as E varies. But when d is large, we do expect the moduli space to be smooth for higher rank E_0.

Proposition 5. Suppose β_h is irreducible, i.e. β_h is not a sum of two curve classes, and $d > 2h-2$. Then the moduli space $S_{\rho^\oplus}(\beta_h, 1 - h + d)$ is smooth of dimension $rd+(r-2)(1-h)+1$.

Proof. Apply the functor $\text{Hom}(\cdot, E)$ to

$$I^* \to \mathcal{O}_X^\oplus \to E \to I^*[1].$$

According to Lemma 18, the associated long exact sequence is

56
\[
0 \to \text{Hom}(E, E) \to H^0(X, E)^{\oplus r} \to \text{Hom}(I^\bullet, E) \to \\
\text{Ext}^1(E, E) \to H^1(X, E)^{\oplus r} \to \text{Ext}^1(I^\bullet, E) \to \\
\text{Ext}^2(E, E) \to 0
\]

Since β_h is irreducible, E is stable. Therefore, $\text{Ext}^2(E, E) = \text{hom}(E, E) = 1$. When $d > 2h - 2$, by Serre duality, $h^1(X, E) = h^1(C, E) = 0$ where C is the support of E. Thus, the tangent space $\text{Hom}(I^\bullet, E)$ has constant dimension $\chi(I^\bullet, E) + 1 = rd + (r - 2)(1 - h) + 1$. \(\square\)

For every $h \geq 0$, there exists a K3 surface X_h and a curve class $\beta_h \in H_2(X_h, \mathbb{Z})$, such that $\beta_h \cdot \beta_h = 2h - 2$ and (7.2) is satisfied, see [KY00, Remark 5.110]. For each $h \geq 0$, we fix such X_h and β_h.

Kawai and Yoshioka calculated the generating series of topological Euler characteristics of the moduli spaces [KY00, Corollary 5.85].

Theorem KY (Kawai-Yoshioka). For $0 < |q| < |y| < 1$, the generating series of topological Euler characteristics is

\[
\sum_{h=0}^{\infty} \sum_{d=0}^{\infty} \chi_{\text{top}}(S_{\mathcal{E}_{X_h}}(\beta_h, 1 - h + d)) q^{h-1} y^{1-h+d} = \frac{1}{(y^{-1/2} - y^{1/2})^2 q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^n y)^2 (1-q^n y^{-1})^2}.
\]

Next, we consider stable pairs over X_h of the form

\[
\alpha : L_h \to E,
\]

where L_h is a line bundle with the first Chern class $c_1(L_h) = l \beta_h$. Such a stable pair is equivalent to $\mathcal{O}_X \to E \otimes L_h^{-1}$. Notice that $c_1(E \otimes L_h^{-1}) = \beta_h$ and $\chi(E \otimes L_h^{-1}) = 1 - h + d - 2l(h - 1)$. Therefore,

\[
S_{L_h}(\beta_h, 1 - h + d) \simeq S_{\mathcal{O}_X}(\beta_h, 1 - h + d - 2l(h - 1)).
\]
If $\alpha \neq 0$, then $d \geq 2l(h - 1)$. The generating series is

\[
\sum_{h=0}^{\infty} \sum_{d=0}^{2l(h-1)} \chi_{\text{top}}(S_{L_h} (\beta_h, 1 - h + d)) q^{h-1} y^{d+1-h}
\]

\[
= \sum_{h=0}^{\infty} \sum_{d=0}^{\infty} \chi_{\text{top}}(S_{\mathcal{O}_X} (\beta_h, 1 - h + d)) (qy^{2l})^{h-1} y^{d+1-h}
\]

\[
= \frac{1}{(y^{-\frac{1}{2}} - y^{\frac{1}{2}})^2 qy^{2l} \prod_{n=1}^{\infty} (1 - q^ny^{2nl})^2 (1 - q^n y^{2nl+1})^2 (1 - q^n y^{2nl-1})^2}.
\]

Now, we consider stable pairs over X_h of the form

\[
\alpha : \bigoplus_i L_{i,h} \to E,
\]

where $L_{i,h}$ is a line bundle with $c_1(L_{i,h}) = l_i \beta_h$. The proof of Proposition 5 can also show that the moduli space is smooth when d is large compared to l_i and h. Let \mathbb{G}_m act on direct summands with distinct weights, then there is a natural \mathbb{G}_m-action on the moduli space $S_{\otimes L_{i,h}} (\beta_h, 1 - h + d)$. A morphism $\otimes L_{i,h} \to E$ is fixed under the action if and only if exactly one summand $L_{i,h}$ is mapped to E nontrivially. Thus, the fixed loci

\[
S_{\otimes L_{i,h}} (\beta_h, 1 - h + d) \cong \bigsqcup_i S_{L_{i,h}} (\beta_h, 1 - h + d).
\]

When $\alpha \neq 0$, $d \geq \min\{2l_i(h - 1)\}$. To calculate the Euler characteristics, we can use the localization formula, even when the moduli space is not smooth [LY87]. Then,

\[
\sum_h \sum_d \chi_{\text{top}}(S_{\otimes L_{i,h}} (\beta_h, 1 - h + d)) q^{h-1} y^{d+1-h}
\]

\[
= \sum_i \frac{1}{(y^{-\frac{1}{2}} - y^{\frac{1}{2}})^2 qy^{2l_i} \prod_{n=1}^{\infty} (1 - q^ny^{2nl_i})^2 (1 - q^n y^{2nl_i+1})^2 (1 - q^n y^{2nl_i-1})^2}.
\]
Appendix. The Case $\deg \delta < \deg P$

This appendix contains the proofs of parallel statements when $\deg \delta < \deg P$ and a remark on critical values of δ.

Proof of Lemma 8. Take the Harder-Narasimhan filtration $\{ F_t \}_{1 \leq t \leq l}$ of E with respect to slope. If the induced map $E_0 \to F_l/F_{l-1} = \gr_t E$ is nonzero, then the argument for the case where $\deg \delta \geq d$ works here. Otherwise, $\im \alpha \subset F_{l-1}$. Thus, by semistability,

$$\frac{\delta}{r(F_{l-1})} + p_{F_{l-1}} \leq \frac{\delta}{r(E)} + p_E.$$

Therefore, $p_{F_{l-1}} \leq p_E$, which in turn implies that $p_{\gr_t E} \geq p_E$. Thus,

$$\mu_{\min}(E) = \mu(\gr_t E) \geq \mu(E).$$

Therefore, $\mu_{\min}(E)$ is bounded below by a constant determined by P and X. \qed

In the construction of the moduli space, we need to replace Lemma 10 by the following lemma.

Lemma 19. Fix P and δ with $\deg \delta < \deg P$. Then there is an $m_0 \in \mathbb{Z}_{>0}$, such that for any integer $m \geq m_0$ and any pair (E, α), where E is a pure with $P_E = P$ and multiplicity $r(E) = r$, the following assertions are equivalent.

i) The pair (E, α) is stable.
ii) \(P_E(m) \leq h^0(E(m)) \), and for any nontrivial proper sub-pair \((G, \alpha')\) with \(G\) of multiplicity \(r(G)\),
\[
\frac{h^0((G, \alpha')(m))}{r(G)} < p_{(E, \alpha)}(m).
\]

iii) For any proper quotient pair \((F, \alpha'')\) with \(F\) of dimension \(d\) and multiplicity \(r(F)\),
\[
\frac{h^0((F, \alpha'')(m))}{r(F)} > p_{(E, \alpha)}(m).
\]

Here, \(h^0((G, \alpha')(m)) = h^0(G(m)) + \epsilon(\alpha')\delta(m)\), and \(h^0((F, \alpha'')(m))\) has a similar meaning.

Proof. A large part of the proof is the same as that of Lemma 10. Again, the proof will proceed as follows: \(i) \Rightarrow ii) \Rightarrow iii) \Rightarrow i\).

\(i) \Rightarrow ii)\) With the same notation, we have the inequalities (3.3) and (3.4). Therefore, when \(\nu \leq \nu_0\), we can further enlarge \(m_1\) such that \(\forall m \geq m_1\)
\[
\frac{1}{d!}((1 - \frac{1}{r})([\mu + m + B])^d + \frac{1}{r}([\nu + m + B]^d)) + \frac{\epsilon(\alpha') \cdot \delta(m)}{r(G)} < \frac{P(m)}{r} + \frac{\epsilon(\alpha)\delta(m)}{r}.
\]
This is because there are only finitely many choices for \(\epsilon(\alpha')/r(G)\). Hence, for \(m \geq m_1\) and \(\nu \leq \nu_0\),
\[
\frac{h^0((G, \alpha')(m))}{r(G)} < p_{(E, \alpha)}(m).
\]

When \(\nu > \nu_0\), by the same argument as in the proof of Lemma 10, we can enlarge \(m_0\) again, if necessary, such that for \(m \geq m_0\), \(P_G(m) = h^0(G(m))\) and
\[
p_{(G, \alpha')} < p_{(E, \alpha)} \iff p_{(G, \alpha')}(m) < p_{(E, \alpha)}(m).
\]
Therefore, either \(\nu \leq \nu_0\) or \(\nu > \nu_0\),
\[
\frac{h^0((G, \alpha')(m))}{r(G)} < p_{(E, \alpha)}(m).
\]
ii) ⇒ iii) Also by studying the exact sequence (3.6),
\[
\frac{h^0(F(m)) + \epsilon(\alpha') \cdot \delta(m)}{r(F)} > \frac{h^0(E(m)) + \epsilon(\alpha) \cdot \delta(m)}{r} \geq p_{(E,\alpha)}(m).
\]

iii) ⇒ i) We also have the inequality (3.7). Denote by \((K,\beta)\) the induced quotient pair. (Here, we change the notation.) By the hypothesis and (3.7),
\[
\frac{P(m) + \epsilon(\alpha)\delta(m)}{r(E)} < \frac{1}{d!}([\mu(K) + m + C]_+)d + \frac{\epsilon(\beta)\delta(m)}{r(K)},
\]
For large \(m\), the right hand becomes a polynomial in \(m\). The leading coefficients of both sides are the same. By considering the second coefficients, we deduce that \(\mu_{\text{min}}(E)\) is bounded below. Thus, \(\mu_{\text{max}}(E)\) is bounded above. Therefore, by Theorem S, the family of pure sheaves \(E\) satisfying the hypothesis for large \(m\) is bounded.

If \((E,\alpha)\) is not stable, we denote by \((F,\alpha'')\) the last Harder-Narasimhan factor of such a pair \((E,\alpha)\), which is a proper quotient. Then \(p_{(F,\alpha'')} \leq p_{(E,\alpha)}\). By Theorem G, the family of these \(F\)'s is bounded. Thus, enlarge \(m_0\) if necessary, \(h^0(F(m)) = P_F(m)\) and \(h^0(E(m)) = P(m), \forall m \geq m_0\). Then
\[
\frac{h^0(F(m)) + \epsilon(\alpha'')\delta(m)}{r(F)} \leq p_{(E,\alpha)}(m),
\]
contradicting the hypothesis. So, \((E,\alpha)\) is stable.

Semistability can be characterized similarly, replacing the two strong inequalities by weak inequalities.

In defining the \(\text{SL}(V)\)-linearized line bundle \(L\), let
\[
\frac{n_1}{n_2} = \frac{\delta(m)}{P(m) + \delta(m)} - \frac{\delta(l)}{P(m) + \delta(m)} \cdot \frac{P(m)}{P(m) + \delta(m)}.
\]
This number is positive for \(l\) large enough, due to the degree condition.

Proof Proposition 4. Suppose \([\sigma] \times [q]\) is GIT-semistable. With the same notations as in the
case where $\deg \delta \geq d$ and the new assignment of n_1/n_2,

$$r(E) - r'' \geq r(G) \geq \frac{\dim W}{\dim V} \cdot \frac{r(E)P(m)}{P(m) + \delta(m)} + \epsilon_W(\sigma) \frac{r(E)\delta(m)}{P(m) + \delta(m)}.$$

Recall that $P(m) = \dim V$. Therefore,

$$\frac{\dim V - \dim W + (1 - \epsilon_W(\sigma))\delta(m)}{r''} \geq \frac{P(m) + \epsilon(\alpha)\delta(m)}{r(E)}.$$

By the same argument as before, if $\alpha'' = \pi \circ \phi \circ \alpha = 0$, then $\text{im } \sigma \subset W$. From the last inequality and (4.7), we get

$$\frac{h^0(F''(m)) + \epsilon(\alpha'')\delta(m)}{r''} \geq \frac{P(m) + \epsilon(\alpha)\delta(m)}{r(E)}.$$

By the same argument, replacing Lemma 10 by Lemma 19, we deduce that (E, α) is semistable.

Next, we assume that (E, α) is stable, and $q(m)$ induces an isomorphism between global sections. For any subspace $0 \neq W < V$, let $G = q(W \otimes O(-m))$ and (G, α') the corresponding sub-pair. If $(G, \alpha') = (E, \alpha)$, the inequality (4.6) holds. Assume that (G, α') is a proper sub-pair. According to Lemma 19, we have

$$\frac{h^0(G(m)) + \epsilon(\alpha')\delta(m)}{r(G)} < \frac{h^0(E(m) + \epsilon(\alpha)\delta(m))}{r},$$

which gives (the inverses of) the coefficients of two sides in the inequality (4.6). Thus, $([\sigma],[q])$ is stable in the GIT sense.

What is left to be proven is that, if (E, α) is a strictly semistable pair, then a point $[\sigma] \times [q]$ in \bar{Z} with associated (E, α) is strictly semistable in the GIT sense. Suppose (G, α') is a destabilizing sub-pair, let

$$W = H^0(G(m)) \subset H^0(E(m)) \cong V.$$
Then $\epsilon(\alpha') = \epsilon_W(\sigma)$. It is enough to show that

$$P_G = (P(l) - \delta(m) - r(l) \frac{P(m)}{P(m) + \delta(m)}) \left(\epsilon_W(\sigma) - \frac{\dim W}{\dim V}\right) + P(l) \frac{\dim W}{\dim V}.$$

By our choice of m, the right hand side equals

$$(P + \delta) \cdot \frac{\dim W + \epsilon_W(\sigma) \delta}{P(m) + \delta(m)} - \epsilon_W(\sigma) \delta = (P + \delta) \frac{r(G)}{r(E)} - \epsilon(\alpha') \delta = P_G.$$

Thus, we have finished proving the cases where $\deg \delta < d$. \qed

Remark 1. Fix the smooth projective variety $(X, \mathcal{O}_X(1))$, coherent sheaf E_0 and the Hillbert polynomial P. When stability condition δ varies, the moduli space $S_{E_0}(P, \delta)$ also undergoes some changes.

A δ is **regular** if there are two polynomials δ_1 and δ_2, such that $0 < \delta_1 < \delta < \delta_2$ and for any $\delta_0 \in (\delta_1, \delta_2)$, the set of δ_0-semistable pairs of type P remains constant. Otherwise, δ is called **critical**. We have the following statement similar to [He98, Theorem 4.2]:

Proposition 6. Fix $(X, \mathcal{O}_X(1))$, E_0 and P. There are only finitely many critical values and they are all of degree $< \deg P$.

Proof. Suppose δ is critical. Let (E, α) be a strictly δ-semistable pair. Then there is a proper sub-pair (E', α') such that

$$p_E + \frac{\delta}{r(E)} = p_{E'} + \frac{\epsilon(\alpha') \delta}{r(E')}.$$

Therefore, each critical δ has the following form

$$\delta = \frac{r(E') P_E - r(E) P_{E'}}{\epsilon(\alpha') r(E) - r(E')}.$$

(3)

If $\alpha' = 0$, then $p_{E'} > p_E$. Thus, $\mu(E')$ is bounded below by the constant $\mu(E)$ determined by P. If $\alpha'' \neq 0$, then there is a nonzero map $\alpha' : E_0 \to E'$. The proof of Lemma 8 also
shows that $\mu(E')$ is bounded below by a constant determined by X and P. Notice that E/E' is pure, since (E, α) is semistable. Therefore, such destabilizing sub-pairs (E', α') form a bounded family, according to Theorem G. So, there are only finitely many such $P_{E'}$’s. Hence, there are only finitely many δ’s of the form (3).

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY

Email: lin.yinb@husky.neu.edu