High Performance Filter and Variable Gain Amplifier Design for Biosignal Measurement Devices

A Thesis Presented

by

Kainan Wang

to
The Department of Electrical and Computer Engineering

in partial fulfillment of the requirement

for the degree of
Master of Science

in
Electrical Engineering

Northeastern University
Boston, Massachusetts

December, 2015
Abstract

In recent years, integrated circuits (ICs) for biosignal acquisitions have gained popularity in both academia and the industry due to the rising demands in medical applications. Biosignals such as brain signals monitored during electroencephalography (EEG) tests can have very low signal levels down to a few microvolts. Therefore, a biosignal measurement system usually requires multiple stages of amplification and filtering to extract the signal of interest from noise and interference. The need to improve the quality of the signal after processing in the analog front-end leads to circuit design challenges that are addressed in this thesis.

The focus of this research is on the design of a low-pass notch filter (LPNF) and a variable gain amplifier (VGA), which are both integrated into a Self-Calibrated Analog Front-End for Long Acquisitions of Biosignals (SCAFELAB) system. The circuits were designed, simulated and fabricated in 0.13-μm complementary metal-oxide semiconductor (CMOS) technology. Post-layout simulations of the LPNF show a passband attenuation of 2.08 dB, a bandwidth of 47.2 Hz, and a 60.9 dB notch depth at 60 Hz to reject powerline interference. The filter’s total input-referred noise integrated from 0.1 Hz to 47.2 Hz is 138.6 μV. Its simulated third-order harmonic distortion (HD3) with the highest anticipated input amplitude is 61.1 dB. The post-layout simulations of the VGA demonstrate a gain range of 32.2-51.3 dB with seven steps. The VGA’s total input-referred noise integrated from 0.1 Hz to 47.2 Hz is 30.8 μV. Its HD3 is 80.8 dB with the lowest gain setting and a 1 V_{pk-pk} output swing. Measurements of the complete analog front-end chip (signal path blocks: instrumentation amplifier, LPNF and VGA) reveal a differential gain range of 66-93 dB with a total power consumption of 41.59 μW. The front-end bandwidth covers 0.5-40 Hz for EEG target applications, and its integrated input-referred noise over the bandwidth is 3.75 μV_{rms}. The measured third-order harmonic distortion component is at least 57 dB below the fundamental signal level. A common-mode rejection ratio (CMRR) of 77.6 dB and a power supply rejection ratio (PSRR) of 74 dB were measured at 10 Hz.
Acknowledgements

First and foremost, I would like to thank my family, who supported and encouraged me throughout the graduate study. I would like to thank my thesis advisor, Prof. Marvin Onabajo, for his guidance on research and life. I would also like to thank my committee members, Prof. Nian X. Sun and Prof. Mark Niedre, for their guidance through the final stages of my M.S. degree completion. I thank the National Science Foundation for financial support of the SCAFELAB project.

I would like to thank Li Xu and Chun-hsiang Chang for their help and guidance on the all kinds of problems during the research process. I would like to thank Alireza Zahrai, Li Xu, and Chun-hsiang Chang for collaborating on the SCAFELAB project.

Finally, to all of my friends all over the world, thank you for your encouragement and care.
Table of Contents

Abstract ... I
Acknowledgements ... II

1. INTRODUCTION ... 1
 1.1 BACKGROUND: BIOSIGNAL ACQUISITION CIRCUITS ... 1
 1.1.1 Low-Transconductance OTA Design ... 2
 1.1.2 MOSFET Pseudo-Resistor Configuration ... 3
 1.1.3 Low Noise Design Consideration .. 4
 1.2 SCAFE LAB PROJECT SCOPE ... 4
 1.3 CONTRIBUTION OF THIS WORK .. 6
 1.4 OUTLINE OF THE THESIS ... 6

2. OVERVIEW: FILTERS ... 7
 2.1 FILTER CLASSIFICATIONS .. 7
 2.2 FILTER IMPLEMENTATIONS .. 8
 2.2.1 Passive Filters ... 8
 2.2.2 Active Filters .. 9

3. LOW-PASS NOTCH FILTER DESIGN ... 11
 3.1 INTRODUCTION .. 11
 3.2 PRELIMINARY DESIGN WITH AN OTA MACRO-MODEL ... 12
 3.2.1 Passive Element Implementation ... 12
 3.2.2 Macro-Model Implementation .. 13
 3.3 OTA DESIGN .. 15
 3.3.1 Low Transconductance Gain Realization .. 15
 3.3.2 Noise Optimization .. 16
 3.3.3 Linearity Optimization .. 16
 3.4 COMMON-MODE FEEDBACK DESIGN .. 17
 3.5 FABRICATED FILTER VERSION ... 18
3.6 SIMULATION RESULTS ... 20

4. VARIABLE GAIN AMPLIFIER (VGA) DESIGN .. 26
 4.1 INTRODUCTION .. 26
 4.2 VGA Design ... 26
 4.3 OTA DESIGN .. 28
 4.4 COMMON-MODE FEEDBACK CIRCUIT ... 29
 4.5 PSEUDO-RESISTOR .. 29
 4.6 FABRICATED VGA VERSION .. 30
 4.7 SIMULATION RESULTS .. 31

5. ANALOG FRONT-END SIMULATION RESULTS 36
 5.1 SIMULATED FREQUENCY RESPONSE OF THE COMPLETE ANALOG
 FRONT-END ... 36
 5.2 DISTORTION SIMULATION .. 38
 5.3 NOISE SIMULATION .. 39
 5.4 SIMULATION WITH A COMMON-MODE INPUT SIGNAL 40
 5.5 SIMULATION WITH POWERLINE INTERFERENCE 41

6. PROTOTYPE CHIP AND PRINTED CIRCUIT BOARD DESIGN 43
 6.1 FABRICATED CHIP .. 43
 6.2 PCB DESIGN ... 45
 6.3 MEASUREMENT SETUP AND TEST DESCRIPTIONS 46
 6.3.1 Gain Measurement ... 47
 6.3.2 Nonlinearity Measurement .. 48
 6.3.3 Noise Measurement .. 49
 6.3.4 CMRR Measurement ... 50
 6.3.5 PSRR Measurement ... 52
 6.4 MEASUREMENT RESULTS AND DISCUSSION 53
 6.4.1 LPNF Tuning ... 53
 6.4.2 Gain Measurement Results .. 55
6.4.3 Noise Measurement Result ... 60
6.4.4 Distortion Measurement ... 62
6.4.5 CMRR Measurement Result .. 64
6.4.6 PSRR Measurement Result ... 64
6.4.7 Measurement Summary ... 65

7. CONCLUSION AND FUTURE WORK .. 68
REFERENCES ... 69
APPENDIX ... 74
List of Figures

Fig. 1 Emotiv EPOC EEG headset .. 1
Fig. 2 (a) PMOS pseudo-resistors with voltage tunability, (b) PMOS-bipolar pseudo-resistors, (c) oppositely-connected PMOS-bipolar pseudo-resistors. ... 3
Fig. 3 Analog front-end for EEG signal measurements with electrode cable capacitances and calibration blocks for input impedance boosting. ... 5
Fig. 4 Transfer functions of a low-pass filter (upper left), band-pass filter (upper right), high-pass filter (lower left) and band-stop filter (lower right). .. 7
Fig. 5 Example transfer functions: three types of fifth-order low-pass filters...................... 8
Fig. 6 A fifth-order RLC Butterworth filter ... 8
Fig. 7 OTA-C based (a) inductor and (b) resistor .. 10
Fig. 8 Diagram of fully-differential analog front-end for biosignal measurements. 12
Fig. 9 An elliptic filter built with passive components.. 12
Fig. 10 Fifth-order single-ended low-pass notch filter (LPNF)... 13
Fig. 11 OTA macro-model. .. 14
Fig. 12 Fifth-order fully-differential low-pass notch filter (LPNF). 14
Fig. 13 OTA with differential difference input stage ... 15
Fig. 14 Common-mode feedback amplifier ... 17
Fig. 15 Frequency response of one CMFB loop .. 18
Fig. 16 Layout of one OTA in the LPNF .. 19
Fig. 17 Layout of the complete LPNF .. 19
Fig. 18 Frequency response of the LPNF ... 21
Fig. 19 Simulated input-referred noise spectral density of the LPNF. 22
Fig. 20 Transient output voltage of the LPNF with 30 mV_{pk-pk} input @ 10 Hz 22
Fig. 21 Output voltage spectrum of the LPNF with 30 mV_{pk-pk} input @ 10 Hz 23
Fig. 22 CMRR (top) and PSRR (bottom) results for the LPNF (from 200 Monte Carlo runs). ... 24
Fig. 23 LPNF frequency responses from Monte Carlo simulations: worst cases before tuning (solid lines) and after tuning (dashed lines). ... 25
Fig. 24 Variable gain amplifier with three-bit control .. 26
Fig. 25 Capacitor bank in the VGA .. 27
Fig. 26 Complete VGA block diagram ... 28
Fig. 27 Schematic of the OTA for the VGA .. 28
Fig. 28 A pseudo-resistor implemented with PMOS transistors 30
Fig. 29 Layout of the 2-stage VGA ... 31
Fig. 30 Frequency response of the VGA .. 32
Fig. 31 Simulated input-referred noise spectral density of the VGA 33
Fig. 32 Transient differential output voltage of the VGA with 25 mV pk-pk input @ 10 Hz. .. 33
Fig. 33 Output voltage spectrum of the VGA with 25 mV pk-pk input @ 10 Hz 34
Fig. 34 CMRR and PSRR results for the VGA (from 200 Monte Carlo runs) 35
Fig. 35 Simulated AFE gain with (a) 30 dB, (b) 40 dB, and (c) 50 dB IA gain settings. 37
Fig. 36 AFE output voltage spectrum with differential 200 µV pk-pk input at 5 Hz (AFE gain = 74.6 dB). ... 38
Fig. 37 AFE output voltage spectrum with differential 600 µV pk-pk input at 5 Hz (AFE gain = 61.2 dB). ... 39
Fig. 38 Output noise density vs. frequency of the AFE system with gain of 71.2 dB. 39
Fig. 39 Differential output voltage of the AFE with a 5 mV pk-pk common-mode input at 10 Hz .. 40
Fig. 40 Differential output voltage of the IA with 5 mV pk-pk common-mode input at 10 Hz .. 41
Fig. 41 Differential output voltage of the AFE with a 5 mV pk-pk sinusoidal signal at 10 Hz coupled to the power supply of the complete AFE (red line) and only to the supply of the IA and VGA (blue line) ... 42
Fig. 42 SCAFELAB chip layout .. 42
Fig. 43 Chip micrograph of the fabricated EEG front-end with input impedance boosting capability in IBM 0.13µm CMOS technology and zoomed-in analog front-end 44
Fig. 44 SCAFELAB PCB photo .. 45
Fig. 45 Systematic gain measurement setup ... 47
Fig. 46 Nonlinearity measurement setup ... 48
Fig. 47 Noise measurement setup ... 49
Fig. 48 CMRR test bench in general .. 50
Fig. 49 CMRR measurement setup .. 51
Fig. 50 PSRR measurement setup .. 52
Fig. 51 Complete measurement setup on the bench ... 53
Fig. 52 Frequency response of the analog front-end before filter tuning 54
Fig. 53 Frequency response of the analog front-end after filter tuning 55
Fig. 54 AFE frequency responses for the 14 gain settings with 40 dB input attenuation and 6 dB driver gain of the test setup ... 56
Fig. 55 AFE frequency responses with IA in high gain mode and de-embedded test setup gain/attenuation ... 57
Fig. 56 AFE frequency responses with IA in low gain mode and de-embedded test setup gain/attenuation ... 57
Fig. 57 Frequency response with the lowest AFE gain setting over wide frequency range. ... 58
Fig. 58 Measured transient output voltage of the AFE with 500 µV pk input at 5 Hz using the lowest gain mode .. 59
Fig. 59 Measured transient output voltage of the AFE with 10 µV pk input at 5 Hz using the maximum gain mode .. 59
Fig. 60 FFT of the AFE output voltage with the same test condition as in Fig. 59 60
Fig. 61 Output-referred noise measurement of the complete EEG front-end 61
Fig. 62 Distortion measurement with a 200 µV pk-pk input at 5 Hz (with 75 dB gain) 63
Fig. 63 Distortion measurement with a 600 µV pk-pk input at 5 Hz (with 66 dB gain) 63
Fig. 64 Differential output voltage of the AFE with a common-mode input sinusoidal signal of 5 mV pk-pk at 10 Hz .. 64
Fig. 65 Differential output voltage of the AFE with a sinusoidal input signal of 5 mV pk-pk at 10 Hz coupled to the power supply voltage .. 65
Fig. 66 Schematic of the CMFB amplifier in the VGA stage 75
List of Tables

Table 1 Typical bioelectrical signal bandwidths and amplitudes .. 2
Table 2 Simulated (post-layout) performance of the LPNF with 1.2 V supply 20
Table 3 Simulated (post-layout) performance of the 2-stage VGA with 1.2 V supply ... 31
Table 4 Comparison with state-of-the-art EEG analog front-ends 67
Table 5 Device parameters of the OTA in the LPNF stage (Fig. 13) 74
Table 6 Device parameters of the CMFB amplifier in the LPNF stage (Fig. 14) 74
Table 7 Device parameters of the OTA in the VGA stage (Fig. 27) 74
Table 8 Device parameters of the pseudo-resistor in the VGA stage (Fig. 28) 75
Table 9 Device parameters of the CMFB amplifier in the VGA stage 75
1. INTRODUCTION

1.1 BACKGROUND: BIOSIGNAL ACQUISITION CIRCUITS

Thanks to the rapid development of integrated circuit (IC) design methods and complementary metal-oxide semiconductor (CMOS) fabrication technologies, CMOS ICs have been employed in various applications to improve our quality of life. New technologies enable low-power circuit design for precise and accurate measurements. In recent years, with the growing need for medical and fitness monitoring devices, we have seen the emergence of wearable devices in consumer electronics (such as the example in Fig. 1) and even implantable circuits and systems [1]. This trend has fueled research efforts aimed at the design of novel devices and systems for biosignal acquisition applications.

Fig. 1 Emotiv EPOC EEG headset

The term “biosignal” has a broad range of definitions. It can refer to an electrical signal (Table 1) such as electromyography (EMG), electrocardiography (ECG) and electroencephalography (EEG); or to a physical quantity such as blood pressure and body temperature [2]. The measurement of biosignals has a long history for diagnostic purposes. Nowadays, the relevance of biosignal measurement/monitoring is beyond the medical world. Taking EEG, also known as the “brain wave”, as an example; this type of signal has been used for drowsiness detection and brain-computer interfaces (BCIs) of assistive technologies in addition to medical diagnostics.

Bioelectrical signals are not easy to acquire [3]. On one hand, these signals are very weak: for instance, the amplitude of an EEG signal can be as low as 5 μV at the
input of the electrode interface circuit. On the other hand, they all fall into a very low frequency range, where the measurement is greatly affected by low frequency noise (such as flicker noise of metal-oxide-semiconductor field-effect transistors [MOSFETs]) and artifacts (e.g., 50/60 Hz powerline interference). Thus, low-noise devices, filtering and multiple levels of amplification are normally required in a biosignal measurement system to minimize the impact of unwanted noise and interference. Because of the mentioned characteristics, there are several widely used techniques in CMOS biosignal acquisition circuit design to deal with large time constants (low signal bandwidth) and low signal-to-noise ratio (SNR) at the sensing interface.

<table>
<thead>
<tr>
<th>Signal type</th>
<th>ECG</th>
<th>EEG</th>
<th>EMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (Hz)</td>
<td>0.5 – 100</td>
<td>0.5 – 100*</td>
<td>10 – 1000</td>
</tr>
<tr>
<td>Amplitude (mV pk-pk)</td>
<td>0.05-5</td>
<td>0.005-0.2</td>
<td>0.005-10</td>
</tr>
</tbody>
</table>

*Signals up to 40 Hz are most active and frequently used

1.1.1 Low-Transconductance OTA Design

Operational transconductance amplifier-capacitor (OTA-C) filters have been extensively utilized in biosignal processing applications. The cut-off frequency of OTA-C filters strongly depends on G_m/C ratios, where G_m is the transconductance of an OTA and C is a capacitor value. In on-chip OTA-C filter implementations, metal-insulator-metal (MIM) capacitors are typically selected with values well below 100 pF in order to save chip area [4], especially in systems with multiple channels. With a limited capacitance range (e.g., $C < 20 \text{ pF}$), the achievable transconductance (g_m) of a single n-channel MOSFET (NMOS) device or p-channel MOSFET (PMOS) device is usually not small enough, even when the transistor is biased in the subthreshold region. To create g_m/C ratios that lead to sub-100 Hz filter cut-off frequencies for EEG and ECG acquisition systems, special OTA integrated circuit design techniques have to be employed. Nevertheless, compared to scaling up the values of the capacitors, scaling down the transconductances of the OTAs is a more feasible approach. Since the transconductance
value is proportional to the change in the output current (Δi_o), scaling down of the output current of an OTA is equivalent to reducing its transconductance. Some widely adapted techniques to decrease OTA transconductance are current division [5], current cancellation [5] and series-parallel current division [6]. Series-parallel current division has the benefit that it scales down the transconductance quadratically. For example, the OTA reported in [6] has a very low transconductance of 33 pA/V.

1.1.2 MOSFET Pseudo-Resistor Configuration

While high resistance values are needed for many biosignal acquisition circuits, on-chip resistors cannot be very large with CMOS fabrication processes due to chip area constraints. However, MOSFETs can be configured to obtain resistances in the gigaohm and even teraohm range.

![Fig. 2](image-url) (a) PMOS pseudo-resistors with voltage tunability, (b) PMOS-bipolar pseudo-resistors, (c) oppositely-connected PMOS-bipolar pseudo-resistors.

Fig. 2 displays some common MOSFET pseudo-resistor configurations. The configuration in Fig. 2(a) (from [7]) allows resistor-capacitor (RC) filter bandwidth tuning by adjusting the DC voltage V_{ctrl} to change the bias of the PMOS device. The connection in Fig. 2(b) was used in [8], which operates as two diode-connected MOSFETs when the gate-to-source voltage (V_{GS}) of each device is negative, and functions as two diode-connected bipolar transistors when positive V_{GS} activates the parasitic bipolar transistors.
The pseudo-resistor in Fig. 2(c) was employed in [9]. It operates similar to the configuration in Fig. 2(b), but it is reported to have better linearity performance.

1.1.3 Low Noise Design Consideration

The majority of biosignals are in the low-frequency regime, where flicker noise of the CMOS devices dominates over thermal noise. The flicker noise voltage power spectral density of a MOSFET is conventionally expressed as

\[S(f) = \frac{K}{C_{ox}WLf}, \]

where \(K \) is a process-dependent constant, \(C_{ox} \) is the oxide capacitance of the MOSFET device, \(L \) and \(W \) are the channel length and width, and \(f \) is the frequency of interest. To minimize the impact of the flicker noise, PMOS input stages (rather than NMOS input stages with higher flicker noise parameters) and large transistor dimensions are commonly seen in integrated circuits that are designed for biosignal acquisition systems.

To further reduce the impact of flicker noise, chopper-stabilized design techniques (such as in [10]) are often used for front-end amplifiers. The underlying concept of such a method is to sample the input signal with a much higher frequency, which is effectively shifting up the signal to the chopping frequency range for processing by the amplifier at the higher frequency where its transistors have less flicker noise according to equation (1). Another advantage of applying chopper-stabilized techniques is that they also minimize the input offset of the amplifier (called auto-zeroing). Due to the small amplitudes of the bioelectric signals, biosignal acquisition systems tend to have a high gain in the instrumentation amplifier stage and also in the complete system. Auto-zeroing is an excellent feature to prevent DC saturation between the stages and at the final output. One significant drawback of chopper-stabilized amplifiers is that their output spectrum usually contains a spike at the chopping frequency, which sometimes requires an additional filter stage to suppress the spike [11].

1.2 SCAFE LAB PROJECT SCOPE

Battery-powered portable or implantable biopotential and bioimpedance measurement devices are becoming increasingly widespread in the medical diagnostics field. The
Self-Calibrated Analog Front-End for Long Acquisitions of Biosignals (SCAFELAB) system (Fig. 3) that is under development in our research group will realize a holistic on-chip performance optimization approach to enable reliable biosignal measurements with low-power single-chip devices fabricated in CMOS technology. The main biosignal-sensing applications for the SCAFELAB system are electroencephalography (EEG) and electrocardiography (ECG) signal acquisitions. Biopotentials are conventionally acquired using electrodes covered with electrolyte gels or solutions to decrease the contact impedance at the skin interface to values below 10 kΩ. However, wet-contact measurements cause discomfort and dry out in novel long-term monitoring applications such as in brain-computer interfaces where EEG signals are acquired and analyzed over hours or longer [4], [12].

In general, dry electrodes such as inexpensive Ag/AgCl are better suited for long-term monitoring, but their use is associated with increased contact resistances that can be above 1 MΩ [13]. This characteristic complicates the measurement of small biopotentials in the range of few microvolts for EEG applications by requiring very high input impedance at the analog front-end amplifier of at least 500 MΩ [14]. Nevertheless, a significant problem is that this impedance is affected by parasitic capacitances of the integrated circuit package as well as electrode cable and printed circuit board (PCB) capacitances that could be as high as 50-200 pF (Cₜ in Fig. 3) at the input of an instru-
mentation amplifier (IA). For instance, when the goal is to record EEG signals with frequencies up to 100 Hz, an interface capacitance of 200 pF would limit the input impedance at 100 Hz to approximately 8 MΩ, which is much less than 500 MΩ and would cause excessive attenuation such that the EEG signal cannot be measured reliably.

The SCAFELAB prototype chip includes an analog front-end (instrumentation amplifier [15], low-pass notch filter [16] and variable gain amplifier) for EEG signal acquisition, a test signal generation system [17] (with oscillator [18], limiter and divider) and digital circuit for automatic input impedance calibration [19]. The future plan for the SCAFELAB project is to combine it with low-power radio frequency (RF) integrated circuits from our group [20]-[22] to design a low-power chip for wireless EEG systems.

1.3 CONTRIBUTION OF THIS WORK

This thesis introduces a fully-differential design approach for the filter and variable gain stage in analog front-ends for biosignal measurement systems. The approach aims at improving robustness to common-mode interference and power supply interference with the trade-off of increased layout area and power, particularly due to the extra common-mode feedback circuits. An OTA topology with differential difference input stage is presented to implement the low-pass notch filter, which can be used in the future to realize other circuits with feedback where a traditional amplifier with only two inputs/outputs is not sufficient.

1.4 OUTLINE OF THE THESIS

A study of the filter theory and implementation was conducted, and a brief overview is presented in Chapter 2. The low-pass notch filter (LPNF) and variable gain amplifier (VGA) designs are described in Chapter 3 and Chapter 4 together with simulation results. System-level simulation results are provided in Chapter 5. The measurement setup and results are included in Chapter 6. Finally, Chapter 7 concludes the thesis and identifies opportunities for future research.
2. OVERVIEW: FILTERS

2.1 FILTER CLASSIFICATIONS

Filters are generally categorized by the shape of their frequency responses; e.g. low-pass, high-pass, band-pass and band-stop filters as visualized in Fig. 4. Two significant parameters of filters are their gain and the bandwidth of frequencies that are passed or amplified, which normally comprise the main reasons why filters are designed in various applications.

Filters can be further grouped by their mathematical transfer functions (i.e., Butterworth filter, Chebyshev filter, elliptic filter and Bessel filter, etc.). Each type of filter has its own characteristics as demonstrated by the examples in Fig. 5, which lead different application-dependent advantages and disadvantages. A Butterworth filter has a maximally flat frequency response in both passband and stopband; a Chebyshev filter has a steeper roll-off than the Butterworth filter but it has a ripple in its transfer function, either in the passband or stopband; an elliptic filter has the fastest transition from the passband to the stopband among all filters with the same order, but has a ripple in both

Fig. 4 Transfer functions of a low-pass filter (upper left), band-pass filter (upper right), high-pass filter (lower left) and band-stop filter (lower right).
the passband and stopband; a Bessel filter has a maximally flat group delay (slowest transition from passband to stopband).

![Graph showing frequency vs. magnitude for different filters.](image)

Fig. 5 Example transfer functions: three types of fifth-order low-pass filters.

2.2 FILTER IMPLEMENTATIONS

Filters have been realized in various ways, one of which is to implement the filter with analog electrical components [23], which is the focus of this section.

2.2.1 Passive Filters

Any type of continuous-time filter can be represented or implemented with ideal passive components: resistors (R), inductors (L) and capacitors (C). Fig. 6 shows a passive RLC implementation of a fifth-order Butterworth filter.

![Passive RLC Butterworth filter diagram](image)

Fig. 6 A fifth-order RLC Butterworth filter.
Passive filters do not consume any power, and are also easy to implement and analyze, particularly when everything is ideal. However, in real-world scenarios, there are several non-ideal parasitic elements associated with the passive devices, which makes the analysis and modeling more complicated. More importantly, the physical size of the passive components can be too large for certain applications, especially when the filter has to be implemented on a single chip.

2.2.2 Active Filters

Active filters are analog filters that use active components such as operational amplifiers (op-amps) or operational transconductance amplifiers (OTAs). They are commonly found in IC filter designs and board-level filter designs. In these cases, one significant reason to use active filters is to avoid using inductors which can be bulky and expensive to include. Active components also allow designing filters with amplification. A general drawback of active filters is that the amplifiers consume power and typically have more adverse impact on the distortion of the output signal compared to passive filters. There are many types of active filters, such as switched-capacitor filters, active-RC filters [24] and OTA-C filters. The use of OTA-C structures is very widespread for filters in biosignal acquisition systems [4], and such a structure was chosen in this thesis work. One OTA-C filter design approach is to transform the transconductance (G_m) cells and capacitors into lumped RLC models, and to analyze the passive equivalent circuit. In the transformation, a capacitor remains a capacitor, a diode-connected OTA becomes a resistor, and a combination of OTA(s) and capacitor(s) emulate an inductor. With this approach, inductances can be realized with active circuits on chips while avoiding the use of large passive inductors.

Fig. 7 depicts an inductor and resistor realized with OTAs. Assuming that all OTAs have the same transconductance value of G_m and that the capacitor has a capacitance of C, then the equivalent inductance seen between terminals ‘1’ and ‘2’ in Fig. 7(a) is: $L = C_i/G_m^2$. The equivalent resistance value seen between terminals ‘3’ and ‘4’ of the diode-connected differential OTA in Fig. 7(b) is $1/G_m$. The next chapter elaborates on the filter architecture and the OTAs designed as active building blocks in this thesis research.
Fig. 7 OTA-C based (a) inductor and (b) resistor.
3. LOW-PASS NOTCH FILTER DESIGN

3.1 INTRODUCTION

Electroencephalogram (EEG) signals fall into four basic frequency bands, δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz), and β (13-40 Hz). Thus, a low-pass filter (LPF) with a cut-off frequency of at least 40 Hz is required in the analog front-end (AFE) for the EEG signal acquisition devices. However, the power line interference at 60 Hz (or 50 Hz) picked up by the electrode cable and circuitry is a significant interference during the EEG signal measurement because its power is typically much higher than the biosignal. Since the power line frequency is too close to the desired β frequency band, a low-order low-pass filter is usually not sufficient to suppress this interference. Thus, a high-order LPF or a combination of a notch filter along with a LPF is often used in this type of AFE. An alternative solution is to employ a filter with both notch and low-pass characteristics, which has been reported in [25] with a switched-capacitor realization and in [26] with a transconductance-capacitor (Gm-C) realization that saves chip area to the benefit of systems with multiple channels.

The low-pass notch filter (LPNF) proposed in this work was adapted from the single-ended Gm-C filter structure reported in [26], and developed into a fully-differential version. A fully-differential structure has a natural advantage over a single-ended structure with regards to the suppression of common-mode interference and power supply interference. As elaborated in Section 3.3, an operational transconductance amplifier (OTA) with a differential difference input stage instead of a conventional differential input stage was designed for this purpose.

In many reported AFEs for biosignal measurement, the variable gain amplifier (VGA) stages are placed between the instrumentation amplifier (IA) and the filter stage [26], especially when the supply voltages are high. However, a large VGA output voltage swing requires high linearity in the filter stage to avoid distortion. Furthermore, based on the fact that the cut-off frequency of a Gm-C filter is determined by the ratio of Gm/C, the OTAs in low-frequency applications are often biased in the subthreshold region to obtain low transconductance (Gm) values in order to reduce the area required for on-chip capacitors. This subthreshold biasing also helps to minimize power con-
sumption, but it exacerbates the linearity performance constraints in the AFE. Hence, the filter stage directly follows the instrumentation amplifier in some recently reported AFEs with low supply voltages [27]. The AFE in this work is aligned with this strategy that is visualized in Fig. 8, where the analog-to-digital converter (ADC) block is outside of the project scope. The IA is not described in this thesis because it was designed by a different research team member. For descriptions of IA design considerations, please refer to reference papers such as [15] and [28]-[29].

![Fig. 8 Diagram of fully-differential analog front-end for biosignal measurements.](image)

3.2 PRELIMINARY DESIGN WITH AN OTA MACRO-MODEL

3.2.1 Passive Element Implementation

An elliptic filter was chosen for this design to obtain a steep roll-off from the EEG frequency band of interest (up to 40 Hz) to the power line interference frequency (50 or 60 Hz).

![Fig. 9 An elliptic filter built with passive components.](image)
Fig. 9 shows a fifth-order elliptic filter built with passive components. To obtain the maximum attenuation at $f = 60$ Hz, the values of components C_2, L_2 and C_4, L_4 should be selected to achieve resonance at 60 Hz. To obtain a DC gain of 1 (0 dB), resistor R_s should have the same value as R_L. With a reasonable on-chip capacitance value of 20 pF, the filter would require a 351 kH inductor, which is too large for inclusion of multiple inductors on the chip. However, it is possible to realize an equivalent inductance with an OTA-C based circuit. With the equation in the last paragraph of Section 2.2.2, the equivalent inductor value is C_L/G_m^2, thus the resonant frequency becomes

$$f = \frac{1}{2\pi} \sqrt{\frac{G_m^2}{C_L C}},$$ (2)

where G_m is the transconductance value of the OTA, C_L is the capacitor in the OTA-C based inductor and C is the capacitor C_2 or C_4 in Fig. 9. If both C_L and C have a value of 20 pF, then a transconductance value of 7.54 nS is required to achieve target design specification.

3.2.2 Macro-Model Implementation

![Fig. 10 Fifth-order single-ended low-pass notch filter (LPNF).](image)

The single-ended filter structure reported in [26] (Fig. 10) was first evaluated with simulations using a macro-model to verify the frequency response with the selected component values. The OTA was modeled in Cadence as shown in Fig. 11, where C_1 represents the input capacitance, G_0 the transconductance, and R_2 the output resistance.
A simple RC network can be set up after the voltage-controlled voltage source (E_0) to model the bandwidth of the OTA; however, since the frequency of interest is much lower compared with the bandwidth of the transistor-level OTA design, the cut-off frequency of the OTA was not considered during the macro-model simulations.

![Fig. 11 OTA macro-model.](image1)

When converting the single-ended filter to a fully-differential version (Fig. 12), a challenge is that the number of input terminals at each OTA is not enough to accommodate the feedback paths. A modified OTA was designed to create the fully-differential filter without adding more OTAs, which would further increase the power and area.

![Fig. 12 Fifth-order fully-differential low-pass notch filter (LPNF).](image2)
3.3 OTA DESIGN

Fig. 13 OTA with differential difference input stage.

3.3.1 Low Transconductance Gain Realization

An OTA topology with differential difference input stage was developed to accommodate the multitude of inputs that have to be processed at each OTA in this differential filter architecture. As the name implies, the OTA in Fig. 13 has two differential input pairs. Since the DC voltage levels of the two input pairs may not be the same (especially for the first OTA in the system where one pair connects to the IA’s output and the other pair is fed back from another OTA’s output that is controlled by common-mode feedback circuits), the two differential input pairs in the OTA have different tail current sources, allowing to design for equal drain currents in the M1-M4 branches. The OTA uses serial-parallel current mirrors [30] to scale down its transconductance. Assuming that the transconductance of the transistors in an input pair in Fig. 13 is g_m, the
number of parallel-connected transistors is \(P \), and the number of serial-connected transistors is \(S \); then the effective transconductance \((G_m) \) of the OTA ideally becomes

\[
G_m = \frac{g_m}{S \cdot P}. \tag{3}
\]

However, the transconductance can deviate from the above equation, especially due to the threshold voltage differences in the serially stacked NMOS transistors. In this design, the \(P \) and \(S \) values of the transconductors were selected as \(P = 40 \) and \(S = 3 \). The filter (Fig. 12) was designed with \(G_{m1} \approx G_{m2} \approx G_{m3} \approx G_{m4} \approx G_{m5} \approx G_{m6} \approx 3.4 \) nS. Lower transconductance values result in reduced capacitor area, but make the OTAs more sensitive to process variations. The transconductance values and the 0.8-6.4 pF capacitor range were selected under consideration of this trade-off.

3.3.2 Noise Optimization

Flicker noise plays an important role at low frequencies where its noise contribution dominates over the thermal noise. For a single transistor, the flicker noise is inversely proportional to its device area. In some reported filters, transistor lengths of 100 \(\mu \)m [31] or even more [26] were used to reduce the flicker noise. However, the device model of the CMOS technology used for this work is only assured for transistor length up to 5 \(\mu \)m. Thus, to minimize the flicker noise, four PMOS transistors and three PMOS/NMOS transistors connected in series with shared gates (as in Fig. 13) are used in the input and output stages to increase the effective transistor lengths, thereby reducing the input-referred noise. The Appendix includes tables with component dimensions for the devices in the OTA and its common-mode feedback circuit.

3.3.3 Linearity Optimization

\(G_m \)-C filters for low-frequency applications require very small transconductance values to permit the use of reasonably small capacitors for on-chip integration, which is why the OTA input pairs are biased in the subthreshold region in some reported works [26], [27], [31]. In this design, the OTA input pairs are biased with gate-to-source voltages above the threshold voltage to achieve high linearity.
3.4 COMMON-MODE FEEDBACK DESIGN

Because the series-connected PMOS and NMOS devices in the output stage of each OTA are operated in the subthreshold region, the output resistance of each OTA output stage is high while the drain-to-source current (I_{ds}) is low, making the DC operating point vulnerable to process variations. Therefore, a common-mode feedback circuit is needed to regulate the DC output level of each OTA’s (G_{m1} to G_{m5} in Fig. 12) output in the filter. The common-mode feedback topology (Fig. 14) is identical to the one used in [32], but was designed with different device dimensions (see Appendix). Fig. 15 displays the frequency response of one of the CMFB loops from a schematic simulation. The plot indicates that this loop has a phase margin of 114.9° and a gain margin of 39.3 dB. The other CMFB loops have similar phase and gain margins, such that stability is ensured.

![Common-mode feedback amplifier](image)

Fig. 14 Common-mode feedback amplifier.
3.5 FABRICATED FILTER VERSION

The LPNF was designed and simulated in IBM 0.13-μm technology for fabrication. To minimize the impact of mismatches and process variations, common-centroid layout was used for the current mirrors, OTAs and also the common-mode feedback amplifiers in the filter. In addition, the MIM capacitors in the filter were split into several unit capacitors to aid device matching. The final layouts of each OTA and the entire filter are displayed in Fig. 16 and Fig. 17.
Table 5 and Table 6 (in the Appendix) list the design parameters of the OTA and CMFB amplifier in this stage. Even numbers of multipliers were used in all devices to apply a common-centroid layout technique. Maximum device lengths according to the process documentation were used to minimize flicker noise.
3.6 SIMULATION RESULTS

Table 2 summarizes the simulated (post-layout) specifications of the LPNF with a 1.2 V supply.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total current consumption</td>
<td>1.66 μA</td>
</tr>
<tr>
<td>Gain</td>
<td>-2.08 dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>47.2 Hz</td>
</tr>
<tr>
<td>Notch @ 60 Hz</td>
<td>60.9 dBc</td>
</tr>
<tr>
<td>HD3 @10 Hz for 30 mV_{pk-pk} input</td>
<td>60.7 dB</td>
</tr>
<tr>
<td>Total input-referred voltage noise (Noise BW from 0.1 Hz to 47.2 Hz)</td>
<td>138.6 μV</td>
</tr>
<tr>
<td>CMRR mean @10 Hz *</td>
<td>64.7 dB</td>
</tr>
<tr>
<td>CMRR standard deviation @10 Hz *</td>
<td>10 dB</td>
</tr>
<tr>
<td>PSRR mean @10 Hz *</td>
<td>58.1 dB</td>
</tr>
<tr>
<td>PSRR standard deviation @10 Hz *</td>
<td>3.4 dB</td>
</tr>
</tbody>
</table>

* Results are the mean from 200 Monte Carlo simulation runs including process and mismatch variations.

Fig. 18 shows the frequency response of the LPNF. The bandwidth of the filter is 47.7 Hz, which covers the four most active EEG signal bands and meets the bandwidth requirement for some electrocardiography (ECG) devices. It has a low-frequency attenuation of 2.08 dB and a 60.9 dBc notch at 60 Hz. Fig. 19 displays the simulated input-referred noise spectral density of the LPNF, which has a 138.6 μV input-referred noise integrated from 0.1 Hz to the 47.2 Hz bandwidth frequency. Fig. 20 displays the filter output from a transient simulation with 30 mV_{pk-pk} (maximum anticipated swing) at
the input of the LPNF. The third-order harmonic distortion (HD3) with the corresponding input amplitude is 60.7 dB, as shown in Fig. 21. Monte Carlo schematic simulations were performed with a correlation coefficient [33] of 0.97 for devices that have been laid out using a common-centroid configuration; i.e., 3% mismatch is estimated for the common-centroid devices. As can be observed in Fig. 22, the results of 200 Monte Carlo simulation runs (with foundry-supplied statistical device models) indicate that the expected mean CMRR and PSRR at 10 Hz are 64.7 dB and 58.1 dB, respectively.

Fig. 18 Frequency response of the LPNF.
Fig. 19 Simulated input-referred noise spectral density of the LPNF.

Fig. 20 Transient output voltage of the LPNF with 30 mV pk-pk input @ 10 Hz.
Fig. 21 Output voltage spectrum of the LPNF with 30 mV_{pk-pk} input @ 10 Hz.
The Monte Carlo simulations also revealed that the notch frequency ranges from 51.3 Hz to 72.4 Hz. However, as evident in Fig. 23, the notch frequency in these two most extreme cases can be tuned to 60 Hz by adjusting the bias current for the OTAs in the filter (within a range of 240-320 nA at the bias current mirror inputs).
Fig. 23 LPNF frequency responses from Monte Carlo simulations: worst cases before tuning (solid lines) and after tuning (dashed lines).
4. VARIABLE GAIN AMPLIFIER (VGA) DESIGN

4.1 INTRODUCTION

The electroencephalogram (EEG) signal amplitudes on the scalp most commonly lie within 10 - 100 μV [34] at the electrode interface, depending on skin conditions, electrode type and environmental factors affecting the contact impedance. In this thesis work, the goal is to acquire signals in the 10 - 200 μV range and to amplify them to 900 mV - 1 V at the analog front-end output. To accommodate different input signal magnitudes, a 2-stage variable gain amplifier is included in the system. A first (fine-tuning) stage has a three-bit control mode, which allows a four-step linear-in-dB gain control from 16 dB to 26 dB. The second stage has a one-bit control, which sets gains of 16 dB or 26 dB.

4.2 VGA Design

![Variable gain amplifier with three-bit control.](image)

The VGA in this work (Fig. 24) is adapted from the circuit structure reported in [8], which was first introduced for neural recording applications. Since then, it has been
used in many EEG acquisition systems as the instrumentation amplifier and the variable gain amplifier [35]-[36]. One of the advantages of using the topology in this system is that it has coupling capacitors at the inputs that block DC voltages. Since the signal path in this work has very high gain and there is no offset cancellation prior to the VGA stage, the coupling capacitors prevent that the amplified DC offset voltages from the previous stages saturate the output stage.

In this VGA (Fig. 24), C_1 is a capacitor bank (Fig. 25) with four capacitors and three PMOS switches, C_2 is a capacitor with a fixed value of 1.2 pF, R is a series of PMOS pseudo-resistors, and G_m is an OTA with high open-loop gain. The mid-band gain (A_M) of the amplifier is proportional to the ratio of C_1/C_2. The lower cut-off frequency is inversely proportional to $C_2\cdot R$. Capacitor C_L represents the capacitive load.

![Capacitor bank in the VGA.](image)

By default (when all the switches are open), each VGA stage has a gain of approximately 16 dB (8/1.2). For the fine-tuning VGA stage, closing the switches shown in Fig. 25 from the bottom to the top one by one, increases the gain to 26 dB with steps that are linear (in dB). The other gain stage has the same capacitor bank structure, but with all gain control bits connected together to achieve a one-bit control by switching from approximately 16 dB to 26 dB.

Since each VGA has a variable capacitor bank at the input, and the transfer function of the filter depends on the capacitive load, a differential pair with NMOS input and diode-connected PMOS load (gain ≈ 1) is used as buffer between the LPNF and the VGA stage. To obtain better linearity, the fine-tuning VGA is placed in front of the other
VGA stage. With this order, the input voltage swing at the final amplification stage is lower during half of the gain settings compared to the case with reverse order (where the fine-tuning VGA is the last stage in the signal path). The complete VGA block diagram is depicted in Fig. 26.

![Complete VGA block diagram](image)

Fig. 26 Complete VGA block diagram.

4.3 OTA DESIGN

![Schematic of the OTA for the VGA](image)

Fig. 27 Schematic of the OTA for the VGA.

The OTA in Fig. 27 for the VGA stage is a modified version of the OTA used in the LPNF (Section 3.3), for which the component dimensions are also listed in the Appendix. PMOS transistors are used for the input pair and large device dimensions are
used reduce the flicker noise. PMOS devices are stacked in the output stage to increase the output impedance for higher open-loop OTA gain.

4.4 COMMON-MODE FEEDBACK CIRCUIT

In this VGA structure, the inputs and outputs of the OTA are floating. For this reason, a common-mode feedback (CMFB) circuit was designed to regulate the DC output of each VGA. The CMFB circuit has the same structure as the one in Section 3.4, but different device parameters that are listed in the Appendix. However, since the output swing of the VGA is significantly larger than the output swing in the filter stage, the CMFB circuit would not operate properly when connected to the output of the OTA. However, the signal at the output of the OTA is attenuated and fed back to the input through the feedback network. Therefore, in the VGA stage, the CMFB circuit (A in Fig. 24) was added at the input of the OTA to sense the common-mode voltage level for regulation of the OTA’s DC common-mode level.

4.5 PSEUDO-RESISTOR

There are many types of MOSFET pseudo-resistors reported for biomedical applications [4]: NMOS and PMOS realization, symmetric and asymmetric, self-biased and off-chip biased. Pseudo-resistors are mainly used when a high resistance value is needed but there is not enough area to implement a standard on-chip resistor. In the VGA stage, high resistance values are required to ensure that the low-frequency EEG signal components are not cut off by the high-pass filter. The pseudo-resistor in each VGA stage is depicted in Fig. 28. The symmetric design guarantees that every PMOS transistor is biased in the same region, and it also avoids extra pad area on the chip that would be required with off-chip voltage biasing. PMOS devices with their bulks connected to their sources were chosen for the pseudo-resistor design over NMOS devices to avoid the impact of the body effect. A symmetric structure was selected for good linearity as mentioned in Section 1.1.2.
4.6 FABRICATED VGA VERSION

The 2-stage VGA was designed and simulated in IBM 0.13-µm technology for fabrication. Common-centroid layout techniques were used for matched devices in the VGA stage as well in the filter stage to minimize the impact of mismatches. Fig. 29 shows the complete layout of the VGA.

Dimensions of devices in the OTA, CMFB amplifier and pseudo-resistor are listed in Table 7, Table 8 and Table 9 in the Appendix. Since the VGA is the last stage of the system, its noise requirement is relaxed, especially for the second VGA stage. Hence, shorter channel length was used in the OTA to reduce layout area. Long channel devices are used for the pseudo-resistors to obtain higher r_o. As in the filter stage, even numbers of devices were used in all sub-circuits to utilize common-centroid layout techniques.
4.7 SIMULATION RESULTS

Table 3 summarizes the post-layout simulation results for the 2-stage VGA with a 1.2 V supply.

Table 3 Simulated (post-layout) performance of the 2-stage VGA with 1.2 V supply

<table>
<thead>
<tr>
<th>Performance</th>
<th>VGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total current consumption</td>
<td>11.25 μA</td>
</tr>
<tr>
<td>Gain</td>
<td>32.2 - 51.3 dB</td>
</tr>
<tr>
<td>HD3 @10 Hz for 25 mV_{pk-pk} input</td>
<td>80.8 dB</td>
</tr>
<tr>
<td>Total input-referred voltage noise</td>
<td>30.8 μV</td>
</tr>
<tr>
<td>(Noise BW from 0.1 Hz to 47.2 Hz)</td>
<td></td>
</tr>
<tr>
<td>CMRR mean @10 Hz *</td>
<td>97.8 dB</td>
</tr>
<tr>
<td>CMRR standard deviation @10 Hz *</td>
<td>7.2 dB</td>
</tr>
<tr>
<td>PSRR mean @10 Hz *</td>
<td>61 dB</td>
</tr>
<tr>
<td>PSRR standard deviation @10 Hz *</td>
<td>7.3 dB</td>
</tr>
</tbody>
</table>

* Results are the mean from 200 Monte Carlo simulation runs including process and mismatch variations.

Fig. 30 shows the simulated frequency response of the 2-stage VGA. The bandwidth of the VGA covers the low-frequency EEG signal range (below 0.5 Hz). The high-
pass cut-off frequency is above 47.2 Hz, which is higher than the LPNF cut-off frequency and sufficient for the system. The two VGAs have a total of seven gain settings with linear-in-dB steps. The lowest gain is 32.2 dB and the highest gain is 51.3 dB. Fig. 31 displays the simulated input-referred noise of the VGA stage vs. frequency with the highest VGA gain, which has a 30.8 µV input-referred noise integrated from 0.1 Hz to the 47.2 Hz bandwidth frequency. Assuming that the weakest signal is to be amplified to 800 mV_{pk-pk} with the highest VGA gain, the VGA stage will have 28 dB SNR by itself, which will not impact the system noise performance significantly. Fig. 32 shows the VGA output voltage (approximately 1 V_{pk-pk} differential output swing with the lowest gain) from a transient simulation with 25 mV_{pk-pk} (differential) at the input of the VGA. As shown in Fig. 33, the corresponding third-order harmonic distortion (HD3) with the same input amplitude is 80.8 dB below the fundamental signal component. Schematic-level Monte Carlo simulations were performed with a correlation coefficient [33] of 0.97 for devices that have been laid out in a common-centroid arrangement. As can be observed in Fig. 34, the results of 200 Monte Carlo simulation runs (with foundry-supplied statistical device models) indicate that the expected mean CMRR and PSRR at 10 Hz are 97.8 dB and 61 dB, respectively.
Fig. 31 Simulated input-referred noise spectral density of the VGA.

Fig. 32 Transient differential output voltage of the VGA with 25 mV_{pk-pk} input @ 10 Hz.
Fig. 33 Output voltage spectrum of the VGA with 25 mV_{pk-pk} input @ 10 Hz.
Fig. 34 CMRR and PSRR results for the VGA (from 200 Monte Carlo runs).
5. ANALOG FRONT-END SIMULATION RESULTS

Cadence Spectre® Simulations of the complete AFE were performed with the IA, LPNF and VGA stages connected together. To minimize the noise interference during measurements after fabrication, the LPNF and VGA stages do not have input nodes that are directly accessible from outside of the chip. For this reason, the simulation results provide insights in addition to the measurement results that are discussed in the next chapter. Nevertheless, the IA stage has a buffered single-ended output to permit some standalone characterization, such as verification of the impedance boosting through measurements.

5.1 SIMULATED FREQUENCY RESPONSE OF THE COMPLETE ANALOG FRONT-END

Fig. 35 shows the frequency responses of the AFE from schematic simulations with all gain settings. The simulation illustrates a gain tuning range from 61.17 dB to 100.23 dB with linear-in-dB gain steps for the IA (10 dB steps) and VGA (3.3 dB steps) stages. The bandwidth with each gain setting can cover the targeted EEG bandwidth of 0.5-40 Hz.
Fig. 35 Simulated AFE gain with (a) 30 dB, (b) 40 dB, and (c) 50 dB IA gain settings.
5.2 DISTORTION SIMULATION

The linearity performance was assessed with a simulation test bench that resembles the measurement setup in the lab. The simulation results shows that the third-order harmonic components with differential input at 5 Hz (AFF gain = 74.6 dB) are 65.46 dBc (Fig. 36) with 200 µV_{pk-pk} input swing and 69.93 dBc (Fig. 37) with 600 µV_{pk-pk} input swing, where “dBc” signifies the number of decibels below the fundamental component. It can also be noticed from the output spectra that the second-order harmonic distortion component is higher than the third-order harmonic, which is different than the results of the standalone LPNF and VGA simulations. The second-order harmonic distortion is mainly created by the IA stage due to the fact that its circuit architecture is not fully-differential.

![Fig. 36 AFE output voltage spectrum with differential 200 µV_{pk-pk} input at 5 Hz (AFE gain = 74.6 dB).]
5.3 NOISE SIMULATION

A noise simulation was conducted with an AFE gain of 71.2 dB, which is the same as the measurement condition in Section 6.4.3. The integrated input-referred noise from 0.5 Hz to 45.5 Hz with this gain setting is 2.16 μV_{rms}.

Fig. 38 Output noise density vs. frequency of the AFE system with gain of 71.2 dB.
The simulated integrated noise with the highest gain setting is 1.84 \(\mu V_{\text{rms}} \), which would permit monitoring EEG input signals of only a few microvolts.

5.4 SIMULATION WITH A COMMON-MODE INPUT SIGNAL

Fig. 39 and Fig. 40 show the simulated differential output voltage of the AFE and IA with a 5 mV\textsubscript{pk-pk} common-mode input at 10 Hz. With this common-mode input signal, the differential peak-to-peak output swing is 1.22 \(\mu V \) at the IA output (Fig. 40), which is amplified to 363.64 \(\mu V \) at the AFE output (Fig. 39). The gain from the IA output to the AFE output is 49.49 dB, which is close to the simulated differential gain of the LPNF stage and VGA stage combined. This simulation result indicates that the IA is likely to be the main limitation for CMRR performance during measurements of the prototype chip with the complete AFE.

![Simulation result graph](image)

Fig. 39 Differential output voltage of the AFE with a 5 mV\textsubscript{pk-pk} common-mode input at 10 Hz.
5.5 SIMULATION WITH POWERLINE INTERFERENCE

Fig. 41 shows the transient power supply gain simulation result. The input signal was a 5 mV pk-pk sinusoidal signal that was coupled to the 1.2 V DC power supply. The red curve shows the differential output voltage of the AFE with the signal added to a shared supply of the whole system (red curve), and blue curve shows the same output when the interference signal was only added to a supply that is common to the IA and VGA. Thus, it can be inferred that the LPNF limits the PSRR.
Fig. 41 Differential output voltage of the AFE with a $5\text{ mV}_{\text{pk-pk}}$ sinusoidal signal at 10 Hz coupled to the power supply of the complete AFE (red line) and only to the supply of the IA and VGA (blue line).
6. PROTOTYPE CHIP AND PRINTED CIRCUIT BOARD DESIGN

6.1 FABRICATED CHIP

Fig. 42 displays a screenshot with the final chip layout of the complete SCAFELAB project (analog front-end and digital calibration circuits) with bonding pads. The chip was assembled in a PLCC84 package. Fig. 43 shows the complete SCAFELAB die photo and the part with the analog front-end (zoomed-in).

Fig. 42 SCAFELAB chip layout.
Fig. 43 Chip micrograph of the fabricated EEG front-end with input impedance boosting capability in IBM 0.13µm CMOS technology and zoomed-in analog front-end.
6.2 PCB DESIGN

For experimental verification, a printed circuit board (PCB) was designed and assembled to provide off-chip bias voltages and currents, regulated supply voltages (for individual blocks) and logic control bits. A differential driver IC (AD8131, with a gain of 6 dB [37]) is employed on the board to generate a differential input signal from the single-ended function generator (Agilent 33250A) and dynamic signal analyzer (HP 35665A). Two capacitors are connected between the output of the driver and the inputs of the IA in order to block DC voltages at the differential driver outputs. Two BNC connectors are placed at the differential output of the VGA. Fig. 44 displays a photo of the SCLAFLAB PCB.

Fig. 44 SCLAFLAB PCB photo.
6.3 MEASUREMENT SETUP AND TEST DESCRIPTIONS

An Agilent E3646A power supply was used to provide the +/-5V supply voltages for the differential driver (AD8131), instrumentation amplifier AD8421, and the +5V voltage for the voltage regulator LM150 (that generates the 1.2V supply voltage for the SCAFE LAB chip). A B&K Precision 1672 power supply was employed to provide the 420 mV DC input for the noise and PSRR measurement. Sinusoidal inputs down to 2 mV \text{pk-pk} were generated with an Agilent 33250A arbitrary waveform generator. Several 10 dB (Mini-Circuits VAT-10W2+) and 20 dB attenuators (Mini-Circuits VAT-20W2+) were used to reduce the input voltages to EEG signal levels. Depending on the test case, a Tektronix DPO2024B oscilloscope or HP 35665A dynamic signal analyzer acquired the output signals.

An instrumentation amplifier (AD8421 [38]) with an input impedance of 30 G\(\Omega\) was placed at the VGA output to convert the differential signal to a single-ended one as well as to present a high impedance load that the VGA can drive. The AD8421 was on an evaluation board (EVAL-INAMP-82RMZ [39]). This high-performance part was selected to minimize impact on measurement results.
6.3.1 Gain Measurement

Gain vs. frequency measurements were performed with an HP 35665A dynamic signal analyzer using the setup in Fig. 45. The notch frequency of the low-pass notch filter was manually tuned to 60 Hz by adjusting the bias current for its OTAs before measuring the system gain. Since the dynamic signal analyzer only has a maximum of 800-line resolution in network analyzer mode, three different frequency ranges were used to obtain the overall transfer function. According to [40], swept-sine analysis (which has best accuracy) is only available at frequencies above 51.2 Hz with this analyzer. A burst random source with an amplitude of $35 \text{ mV}_{\text{peak}}$ was used to measure the front-end transfer function with the lowest system gain mode. The amplitude was then adjusted for the different gain modes. The uniform window option was utilized during this measurement as suggested in the user manual. In the test setup, the attenuators create a total input attenuation of 40 dB, and the single-ended to differential driver has a gain of 6 dB, which both have to be de-embedded from the final gain measurement results.

Fig. 45 Systematic gain measurement setup.
6.3.2 Nonlinearity Measurement

To measure nonlinearity (second-order and third-order harmonic distortion), an Agilent 33250A was used to generate a sinusoidal input at 5 Hz such that the third-order harmonic distortion component is within the passband of the filter. According to [37], the differential driver has an HD3 of at least 90 dBC at 5 Hz with small output voltage swing, which is much higher than the simulated system specification. For the linearity testing, a 40 dB attenuation was implemented with two attenuators because the minimum output amplitude of the function generator (2 mV_{pk-pk}) would be too high (outside of the typical EEG signal range). The differential output of the AFE was combined with the AD8421 and fed to the dynamic signal analyzer for fast Fourier transform (FFT) analysis with the uniform window option. For the 4-16.5 Hz frequency range, the FFT was obtained with 400-line resolution.

Fig. 46 Nonlinearity measurement setup.
6.3.3 Noise Measurement

To measure the spectral noise density of the system, the inputs of the IA on the chip were tied to a fixed DC voltage of 420 mV. Since the system gain is high, the front-end output noise can be captured directly with the dynamic signal analyzer as visualized in Fig. 47. Hence, the integrated input-referred noise can be calculated by dividing the measured noise by the gain. Even though the noise bandwidth of the system is less than 50 Hz, the frequency range and line resolution of the HP 35665A were set the same as during the gain measurement (0.5-200.5 Hz, 800 data point, uniform window) to ease the calculation of the integrated input-referred noise after capturing the integrated input-referred noise.
6.3.4 CMRR Measurement

![CMRR test bench diagram](image)

In published biosignal measurement systems, the CMRR and PSRR are usually reported at a single frequency. To measure CMRR at a certain frequency, a common practice is to apply a sinusoidal common-mode input signal (v_{cm}) to the device under test (DUT) and to measure the transient output amplitude as in the diagram of Fig. 48. The measured output voltage amplitude is the common-mode error signal (v_{err}), and the common-mode gain is v_{err}/v_{cm}. Afterwards, the common-mode rejection ratio can be calculated as

$$CMRR = 20 \cdot \log_{10} \frac{v_{err}}{G \cdot v_{cm}},$$

(4)

where G is the differential gain of the DUT.

To better distinguish the error signal from noise, the FFT functionality of the dynamic signal analyzer was used to measure the common-mode output with the setup in Fig. 49 instead of an oscilloscope. A 5 mV pk-pk sinusoidal input at 10 Hz was selected for the CMRR measurement. Though the 5 mV pk-pk swing is much higher than the anticipated EEG signal level at the IA input, this test signal is just large enough so that the common-mode output voltage appears above the noise floor. On the dynamic signal analyzer, a 4-16.5 Hz frequency range and uniform window option were used for the FFT analysis in this measurement with 400-line resolution.
Fig. 49 CMRR measurement setup.
6.3.5 PSRR Measurement

The PSRR measurement setup (Fig. 50) was similar to the CMRR measurement described in the previous subsection, except that the sinusoidal input was superimposed on the voltage supply instead of applied as common-mode input. The dynamic signal analyzer was chosen instead of an oscilloscope for the same reason as during the CMRR measurement. A 5 mV\textsubscript{pk-pk} sinusoidal input at 10 Hz was applied for the PSRR measurement. This test signal was generated with an Agilent 33205A arbitrary waveform generator together with a 1.255 V DC offset, which is the same voltage as the minimum output of the low-dropout regulator (LDO) on the PCB that provided the DUT supply voltage. The rest of the board was still powered by the on-board LDO so that the bias

Fig. 50 PSRR measurement setup.
voltages on the PCB are steady. On the dynamic signal analyzer, a 4-16.5 Hz frequency range and uniform window option were used for the FFT analysis in this measurement with 400-line resolution. The photo in Fig. 51 shows the complete measurement setup in the laboratory.

Fig. 51 Complete measurement setup on the bench.

6.4 MEASUREMENT RESULTS AND DISCUSSION

6.4.1 LPNF Tuning

As described in Section 3.6, the notch frequency of the LPNF has to be aligned to 60 Hz. Fig. 52 shows the frequency response of the analog front-end before LPNF tuning. The two notch frequencies are 40 Hz and 60 Hz, which means one of the bias current of the LPNF is was too small in the presence of fabrication process variations. Fig. 53 shows the frequency response with the same gain setting after manual tuning of the LPNF. Comparing the two plots, the tuned frequency response has more attenuation near the notch frequency (> 67 dBc) at 59 Hz than the un-tuned response at 60 Hz (> 60 dBc). A residue of the 60 Hz powerline interference (~ 35.5 dBc) is still visible in the tuned frequency response. The two transfer functions also show a 3 dB difference in the
passband gain, which is due to the change in the transconductance of the OTAs during bias current tuning.

Fig. 52 Frequency response of the analog front-end before filter tuning.
6.4.2 Gain Measurement Results

The IA in this AFE was designed to have three different gain settings, and the VGA was designed to have seven gain settings. However, with process-voltage-temperature variations, the maximum gain setting of the IA (50 dB) is not usable. Even though the differential output of the IA (differential input of the LPNF) is not accessible from outside of the chip, it can be assumed that the output offset of the IA (with highest gain) saturates the LPNF stage. Hence, the system gain measurements were performed with 30 dB and 40 dB gain settings in the IA, which implies a total number of 14 gain settings for which the frequency responses are displayed in Fig. 54.

Fig. 53 Frequency response of the analog front-end after filter tuning.
Fig. 54 AFE frequency responses for the 14 gain settings with 40 dB input attenuation and 6 dB driver gain of the test setup.
Fig. 55 AFE frequency responses with IA in high gain mode and de-embedded test setup gain/attenuation.

Fig. 56 AFE frequency responses with IA in low gain mode and de-embedded test setup gain/attenuation.
Fig. 55 and Fig. 56 show the AFE transfer functions with IA in high and low gain modes, where the -34 dB test bench gain (40 dB attenuation from the input attenuators, 6 dB gain from the differential driver) was de-embedded. The total AFE gain ranges from 66 dB to 93 dB with linear-in-dB steps. The results with higher gain modes are noisier due to the smaller input amplitude used during the tests. The gain steps in the high IA gain mode are less evenly distributed than those in the low IA gain mode, which is mainly the result of the DC offset drift during the acquisition time. Fig. 55 and Fig. 56 demonstrate that the passband includes the complete target EEG frequency band from 0.5 to 40 Hz. As explained in Section 6.3.1, three different frequency ranges were used to characterize the AFE transfer function. Fig. 57 displays the measured transfer function with the lowest AFE gain setting, which was created by combining the data collected from high-accuracy measurements spanning the three difference frequency ranges. The plot reveals that the high-pass cut-off frequency due to the VGA stage is lower than 0.1 Hz.

Fig. 57 Frequency response with the lowest AFE gain setting over wide frequency range.
Fig. 58 and Fig. 59 show the transient output voltages with the maximum and minimum AFE gain modes. Since the system gain was overdesigned, the input signal amplitude used for verification of the minimum gain mode is higher than the typical EEG signal amplitude. The resulting large undistorted output voltage is clearly visible in Fig. 58. Since the 5 Hz component is not clearly visible in the transient output in Fig. 59 with maximum gain (10 µV\textsubscript{pk} input signal amplitude), Fig. 60 shows the FFT from this test case, which uncovers that the output signal is approximately 20 dB above the noise floor.

![Fig. 58 Measured transient output voltage of the AFE with 500 µV\textsubscript{pk} input at 5 Hz using the lowest gain mode.](image-url)
6.4.3 Noise Measurement Result

Fig. 59 Measured transient output voltage of the AFE with 10 \(\mu \text{V}_{\text{pk}} \) input at 5 Hz using the maximum gain mode.

Fig. 60 FFT of the AFE output voltage with the same test condition as in Fig. 59.

Fig. 61 shows the output-referred noise of the complete AFE with the maximum gain setting for the IA and minimum gain setting for the VGA. As expected, the flicker...
noise dominates at the lower frequencies. Though the 60 Hz noise is strongly attenuated by the notch in the filter, it is still visible in the output noise spectrum along with its second-order and third-order harmonics at 120 Hz and 180 Hz.

The integrated input-referred noise (IRN) was calculated after transfer of the raw data to Matlab. The integrated IRN from 0.5 Hz to 45.5 Hz is 3.75 µVrms, which is high compared with many reported state-of-the-art analog front-ends (Table 4). This is mainly because the focus of the SCAFELAB project was on input impedance boosting but not best-in-class noise performance. The impedance boosting methods was developed for a widely used IA architecture, but is currently specific to the architecture. Best-in-class front-end noise performance is typically achieved with particular IA design methods, such as chopping techniques to minimize the impact of flicker noise, but the IA in the presented front-end does not include noise enhancement features. Nevertheless, the integrated noise of this front-end is still lower than that of some other designs (e.g., the IA in [41] with a chopper-stabilized technique), and it is adequate for many EEG moni-

![Fig. 61 Output-referred noise measurement of the complete EEG front-end.](image)
toring applications as demonstrated by the measurement results in this chapter. An additional consideration is that the measurements were affected by test setup noise sources, particularly when comparing the measured AFE noise with the simulated AFE noise (integrated IRN from 0.5 Hz to 45.5 Hz: 2.16 μVrms) in Section 5.3.

6.4.4 Distortion Measurement

Fig. 62 shows that the third-order harmonic distortion (HD3) component is at least 51.3dB below the fundamental signal (51.3 dBC) with the maximum gain setting of the IA and the minimum gain setting of the VGA (total gain: 75 dB) and a peak-to-peak differential input voltage of 200 μV at 5Hz. This input amplitude and gain setting combination was chosen to ensure that the input amplitude is within the typical EEG signal range, while each stage has sufficient voltage headroom and the third-order harmonic is not visible (i.e., below the noise floor). However, with the maximum IA gain, the input DC offset of the LPNF stage can impair the overall linearity performance. Note that the maximum IA gain was only chosen for this test to demonstrate the low-distortion characteristic, but in normal mode of operation a low gain setting would be used when the EEG signal strength is high. With higher (compared to the typical EEG signal level) input amplitude of 600 μVpk-pk at the IA and the lowest front-end system gain setting, the HD3 is at least 57dBc as shown in Fig. 63. From both figures, the second-order harmonic is visible as expected from the simulation results that are explained in Section 5.2. The HD2 with low input signal level and higher gain is more visible, which is likely to be caused by the larger output offset of the IA stage under this test condition.
Fig. 62 Distortion measurement with a 200 µV_{pk-pk} input at 5 Hz (with 75 dB gain).

Fig. 63 Distortion measurement with a 600 µV_{pk-pk} input at 5 Hz (with 66 dB gain).
6.4.5 CMRR Measurement Result

Fig. 64 shows a 13.54 mV_{pk-pk} differential output voltage of the AFE measured with a sinusoidal common-mode input signal of 5 mV_{pk-pk} at 10 Hz, resulting in a common-mode gain of 8.65 dB. The differential AFE gain measured with the same gain setting is 86.25 dB at 10 Hz. Thus, the common-mode rejection ratio (CMRR) is 77.6 dB.

6.4.6 PSRR Measurement Result

Fig. 65 displays the 6.15 mV_{pk-pk} differential output voltage of the AFE that was measured with a sinusoidal signal of 5 mV_{pk-pk} at 10 Hz superimposed to the 1.255 V power supply. The power supply gain in this case is 1.80 dB, and the measured differential gain at 10 Hz with this gain setting is 75.53 dB. Thus, the power supply rejection ratio (PSRR) is 73.73 dB.
Fig. 65 Differential output voltage of the AFE with a sinusoidal input signal of 5 mV_{pk-pk} at 10 Hz coupled to the power supply voltage.

6.4.7 Measurement Summary

Table 4 lists the measurement results of the AFE in this work in comparison with other state-of-the-art EEG AFEs reported in the literature. The supply voltage of this work is 1.255 V, which is slightly higher than the standard 1.2 V supply for 0.13 µm CMOS technology. The reason is that the voltage regulator (LM150) on the PCB can only support an output voltage down to 1.255 V. The DC supply current of the system is 33.14 µA, excluding external bias circuitry. This total current is the sum of the supply currents in the IA, LPNF and VGA stage. The LPNF is the only stage among the three that does not have an independent voltage supply so that current of the LPNF could only be estimated as 1.5x of the current from the simulation. The estimation factor 1.5x is based on the other two stages, where the measured currents are both around 1.5x higher than in the simulation results. The current of the AFE in this work is relatively high.
compared with other reported AFEs. On one hand, the AFE in this work has more stages than some of the other AFEs. Furthermore, the common-mode feedback circuits in this work consume approximately 50% of the total current in both LPNF and VGA stage, which are often not used in other works.

The AFE voltage gain ranges from 66 dB to 93 dB, which is a few decibels higher than the simulated gain range. This is influenced by the mismatch of the resistors in the IA stage and the capacitors in the VGA stage. The manual LPNF tuning also has an effect on the gain, as explained in Section 6.4.1.

The CMRR and PSRR results are comparable with the state-of-the-art. However, the CMRR or PSRR can be further improved by applying better matching techniques for the circuits in the differential signal path, both on the chip and on the board, or by developing an on-chip LDO to improve the supply voltage quality.

The noise of this work is high due to the IA architecture. Chopping techniques are applied in many recently reported EEG AFEs because the flicker noise is critical at low frequencies. The test setup is also a contributor that adversely impacts the noise performance, which is suggested by the fact that the measured noise is higher than the simulated noise with foundry-supplied device models.

The total harmonic distortion (THD) for this work in Table 4 was calculated from the measurement result shown in Fig. 63, which only includes the second-order and third-order harmonics because the higher-order harmonics are below the noise floor.

In summary, the measurement results of this AFE are comparable with the state-of-the-art in many aspects. Some specifications that are not as cutting edge as other AFEs are predominantly limited by the instrumentation amplifier architecture. However, the measured overall front-end performance is adequate.
Table 4 Comparison with state-of-the-art EEG analog front-ends

<table>
<thead>
<tr>
<th></th>
<th>[41]</th>
<th>[42]</th>
<th>[43]</th>
<th>[44]</th>
<th>[45]</th>
<th>[46]</th>
<th>this work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply (V)</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>3</td>
<td>1.8</td>
<td>1.8</td>
<td>1.255</td>
</tr>
<tr>
<td>Current consumption (µA)</td>
<td>1.8</td>
<td>3.5</td>
<td>0.337</td>
<td>3.6</td>
<td>58</td>
<td>0.9</td>
<td>33.14*</td>
</tr>
<tr>
<td>Gain (dB)</td>
<td>40</td>
<td>40</td>
<td>45.6-60</td>
<td>72-81.6</td>
<td>42.9</td>
<td>40</td>
<td>66-93</td>
</tr>
<tr>
<td>CMRR (dB)</td>
<td>134</td>
<td>60</td>
<td>71</td>
<td>-</td>
<td>102</td>
<td>97</td>
<td>77.6***</td>
</tr>
<tr>
<td>PSRR (dB)</td>
<td>120</td>
<td>-</td>
<td>84</td>
<td>89</td>
<td>-</td>
<td>-</td>
<td>74***</td>
</tr>
<tr>
<td>Noise RTI</td>
<td>6.7 µV<sub>rms</sub> (0.5-100 Hz)</td>
<td>1.3 µV<sub>rms</sub> (100 Hz)</td>
<td>2.5 µV<sub>rms</sub> (0.05-460 Hz)</td>
<td>0.59 µV<sub>rms</sub> (0.5-100 Hz)</td>
<td>0.65 µV<sub>rms</sub> (0.5-100 Hz)</td>
<td>0.9 µV<sub>rms</sub> (0.5-100 Hz)</td>
<td>3.75 µV<sub>rms</sub> (0.5-45.5 Hz)</td>
</tr>
<tr>
<td>THD (%)</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td><1</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Technology</td>
<td>65 nm CMOS</td>
<td>0.18 µm CMOS</td>
<td>0.35 µm CMOS</td>
<td>0.35 µm CMOS</td>
<td>0.18 µm CMOS</td>
<td>0.18 µm CMOS</td>
<td>0.13 µm CMOS</td>
</tr>
<tr>
<td>AFE Type</td>
<td>CCIA</td>
<td>IA</td>
<td>TB-FEA+PGA</td>
<td>ACCIA+CSF +VGA+GM +Buffer</td>
<td>DAE</td>
<td>DCCR-AFE</td>
<td>IA+LPNF +VGA</td>
</tr>
</tbody>
</table>

* LPNF current estimated as 1.5x of that in the simulation result; currents of other blocks were measured.

** IA = instrumentation amplifier, TB-FEA = tunable bandwidth front-end amplifier, PGA = programmable gain amplifier, ACCIA = AC coupled chopper-stabilized instrumentation amplifier (ACCIA), CSF = chopping spike filter, VGA = variable gain amplifier, GM = transconductance, DAE = digital active electrode, DCCR-AFE = dual-channel charge recycled analog front end, CCIA = capacitively-coupled instrumentation amplifier.

*** Measured at 10 Hz.
7. CONCLUSION AND FUTURE WORK

Several design considerations for biosignal acquisition circuits were discussed in this thesis. A fully-differential LPNF and a fully-differential VGA for EEG signal measurements were proposed and designed. The presented circuits were combined with an instrumentation amplifier to form a complete analog EEG front-end, which was simulated, front-end achieves competitive performance measured and compared with state-of-the-art designs reported in the literature. The specifications. It has a total power consumption of 41.59 µW and a measured differential gain range from 66 to 93 dB. The CMRR and PSRR of the complete front-end are 77.6 dB and 74 dB, respectively. The measured input-referred noise is 3.75 µV_{rms} integrated from 0.5 Hz to 45.5 Hz, and the front-end has a THD of 0.4 \%.

With regards to future work, the evolution of the proposed analog front-end with input impedance boosting and fully-differential signal processing in the filter and variable gain amplifier stages could include the combination of chopper-stabilized design techniques to reduce the effects of DC offsets and flicker noise. Furthermore, to achieve lower power consumption, it can be explored to devise a more efficient common-mode feedback circuit design methods. For the low-pass notch filter, an on-chip digital calibration method can be developed to automatically tune the notch to the frequency of the powerline interference. In the big picture, the EEG analog front-end in the SCAFELAB project could become part of a wireless EEG signal acquisition system with the combination of a low-power RF transceiver.
REFERENCES

[41] Q. Fan, F. Sebastiano, J. H. Huijsing, K. A. A. Makinwa, “A 1.8μW 60nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wire-

APPENDIX

Table 5 Device parameters of the OTA in the LPNF stage (Fig. 13)

<table>
<thead>
<tr>
<th>Device</th>
<th>Dimensions [width (µm)/length (µm)]</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁-M₁₆</td>
<td>0.6/5</td>
<td>2</td>
</tr>
<tr>
<td>M₁₇-M₂₂</td>
<td>0.5/5</td>
<td>2</td>
</tr>
<tr>
<td>M₂₃, M₂₄</td>
<td>0.3/5</td>
<td>80</td>
</tr>
<tr>
<td>M₂₅-M₃₀</td>
<td>0.3/5</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 6 Device parameters of the CMFB amplifier in the LPNF stage (Fig. 14)

<table>
<thead>
<tr>
<th>Device</th>
<th>Dimensions [width (µm)/length (µm)]</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₃₁-M₃₄</td>
<td>0.5/5</td>
<td>2</td>
</tr>
<tr>
<td>M₃₅</td>
<td>1/5</td>
<td>20</td>
</tr>
<tr>
<td>M₃₆, M₃₇</td>
<td>1/5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 7 Device parameters of the OTA in the VGA stage (Fig. 27)

<table>
<thead>
<tr>
<th>Device</th>
<th>Dimensions [width (µm)/length (µm)]</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁, M₂</td>
<td>5/3</td>
<td>8</td>
</tr>
<tr>
<td>M₃, M₄</td>
<td>0.5/3</td>
<td>8</td>
</tr>
<tr>
<td>M₅, M₆</td>
<td>0.5/3</td>
<td>2</td>
</tr>
<tr>
<td>M₇-M₁₀</td>
<td>0.6/5</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 8 Device parameters of the pseudo-resistor in the VGA stage (Fig. 28)

<table>
<thead>
<tr>
<th>Device</th>
<th>Dimensions [width (µm)/length (µm)]</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{11}-M_{26}</td>
<td>0.5/5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9 Device parameters of the CMFB amplifier in the VGA stage

<table>
<thead>
<tr>
<th>Device</th>
<th>Dimensions [width (µm)/length (µm)]</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{27}-M_{30}</td>
<td>5/3</td>
<td>8</td>
</tr>
<tr>
<td>M_{31}</td>
<td>5/3</td>
<td>8</td>
</tr>
<tr>
<td>M_{32}, M_{33}</td>
<td>5/3</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 66 Schematic of the CMFB amplifier in the VGA stage.