The Integration of Mass Spectrometry and NMR for Structural Characterization of Trace-Level Analytes in Complex Samples.

A dissertation presented by

Rose Muthoni Gathungu

to

The Department of Chemistry and Chemical Biology

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the field of

Chemistry

Northeastern University
Boston, Massachusetts
April 2012
The Integration of Mass Spectrometry and NMR for Structural Characterization of Trace-Level Analytes in Complex Samples.

by

Rose Muthoni Gathungu

ABSTRACT OF DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry and Chemical Biology in the Graduate School of Science Northeastern University, April 2012
ABSTRACT

This thesis centers on the applications of mass spectrometry based techniques and nuclear magnetic resonance (NMR) to the structural elucidation of low molecular weight analytes in complex mixtures. In the first chapter, a detailed overview of the challenges associated with the integration of LC-MS and NMR and the approaches that have been taken towards overcoming their mutually incompatible features in order to create an efficient analytical platform is discussed.

Chapter 2 introduces an integrated LC-MS-NMR platform developed here at Northeastern that provides high sensitivity for both MS and NMR. The platform uses a post-column nanoSplitter for online LC-MS, and offline microdroplet NMR. The nanoSplitter provides nanoelectrospray from 4 mm columns whilst collecting most of the flow for offline NMR. Nanoelectrospray reduces signal suppression and increases sensitivity when compared to conventional electrospray. Microfluidic sample loading, whereby the analyte is carried as a droplet in an immiscible oil, increases sample loading efficiency into a microcoil NMR probe, for conducting NMR in the most mass sensitive way. Because MS and NMR have different sample and time requirements, NMR is conducted offline, which also allows for evaluation of MS data in prioritizing goals for NMR analysis. The utility of this platform is shown in the analysis of plant cell cultures. Plant cell and tissue cultures are a scalable and controllable alternative to whole plants for obtaining natural products of medical relevance. The utility of our LC-MS-NMR approach is demonstrated in the analysis of elicited Eschscholzia californica cell cultures induced to produce benzophenanthridine alkaloids. Preliminary HPLC-UV analysis provides an overview of the changes in the production of alkaloids with time after elicitation. At the time point corresponding to the optimal yield of alkaloid products, the integrated LC-MS-microcoil NMR
platform is used for structural identification of extracted alkaloids. Eight benzophenanthridine alkaloids were identified at the sub-microgram level.

In Chapter 3, a robust and highly sensitive analytical method that combines the strengths of mass spectrometry, and NMR is developed. The end-goal of the work presented is to utilize this analytical method in the structural elucidation of metabolites affected by diet. These metabolites had previously been identified as markers of interest in a metabolomics study (the study of all low molecular weight analytes in a biological system) using liquid-chromatography-electrochemical detection (LC-EC). The structural characterization of these metabolites would aid in identifying metabolic pathways altered by changes in diet and their association to disease risk. Although highly sensitive (LODs at femtomole level), LC-EC provides little structural information thus the need for MS and NMR. The validity of the developed analytical method is demonstrated in the structural elucidation of metabolites in human plasma. For MS, a high-resolution mass spectrometer operated with full-scan MS alternating between positive and negative ion mode, and with high-energy collisional dissociation (HCD) all ion fragmentation in each mode for MS/MS. Additional structural information of volatile and semi-volatile metabolites is also gained from GC-MS analysis. Microcoil NMR, with limits of detection at 2 nmoles, is used as a follow-up to MS analysis. By integrating data from mass spectrometry, microcoil NMR and LC-EC, nine metabolites from human plasma are unambiguously identified.

In Chapter 4, the superseding role of GC-MS for structural elucidation of Vitamin D compounds is demonstrated. The hormonally active form of Vitamin D, 1α,25(OH)2D3 (Vitamin D3), has therapeutic effects in various diseases including cancer. The major limitation to using Vitamin D3 as a therapeutic agent is its potent calcemic activity, which leads to hypercalcemia.
Hypercalcemia leads to the formation of renal stones, soft tissue calcification and can be lethal. A second limitation of the use of Vitamin D₃ as a therapeutic agent is its short half-life caused by its rapid metabolism and inactivation by CYP 24A1 hydroxylase. In this chapter, a combination of GC-MS and HPLC were utilized to investigate the metabolism and stability of two vitamin D analogs which were designed to resist metabolic inactivation by CYP24A1 and with reduced calcemic effect. The metabolism of the C-3 epimer, a natural metabolite of 1α,25(OH)₂D₃ by CYP24A1, is also investigated [6]. 1α, 25(OH)₂-3epi-D₃ differs from Vitamin D₃ in the configuration of the hydroxyl group at C-3 and has been shown to have the same therapeutic effects as Vitamin D₃ but without the calcemic effects.

In Chapter 5, some preliminary results demonstrating a metabolite extraction scheme utilizing chelating agents for improved metabolite recovery in metabolomics are presented. This chapter also includes some recommendations for future research based on the studies presented in this dissertation.
ACKNOWLEDGEMENTS

The completion of this thesis would not have been possible without the help and support from a lot of people who I would like to take this opportunity to thank.

For his guidance through these last four years and for giving me the opportunity to work in his lab, many thanks to my graduate advisor Dr. Paul Vouros, who in addition to being a great scientist is also a great man, I could not have asked for a better advisor. I am grateful for all the time and energy he put into my scientific development. I would also like to thank Dr. Roger Kautz who has acted as a co-supervisor. His love and enthusiasm towards science is an inspiration. Dr. Vouros and Dr. Kautz gave me the freedom to explore on my own but always gave me the guidance and support when I needed it which has made me a better scientist. Thank you!

All my graduate work was done with collaborators from whom I have learnt a great deal about different fields. I would like to thank Dr. Carolyn Lee-Parsons and Dr. John Oldham for all their help with cell cultures. I would also like to thank Dr. Satya Reddy and Dr. Steve Rhieu with whom I worked with on the analysis of Vitamin D compounds. Most recently, I started working with Dr. Bruce Kristal, who has spent a lot of time answering all my questions even the simplest of them and for that I am grateful. From Dr. Kristal’s lab I would like to thank Diane Sheldon and most especially Dr. Susie Bird. Susie took me under her wings when I first joined the Vouros group and has continued to be incredibly supportive through these last four years for that I thank you. I would also like to thank Dr. Sergiy Tyukhtenko and Dr. Jianxin Guo both of Northeastern’s Centre of Drug Discovery for always accommodating me on their NMR spectrometer and for their assistance with experimental set-up.
I would like to thank members of my thesis committee for taking the time to read my thesis: Dr. Michael Pollastri, Dr. Carolyn Lee-Parsons, Dr. Satya Reddy and Dr. Bruce Kristal. I would also thank Dr. Susan Bird for the feedback she provided as I was writing this dissertation.

Shout out to Vouros group members both current and former who I have had the pleasure of meeting and working with. I would like to thank current members, Dr. Jim Glick for all his help with instrumentation, Dr. Steve Coy, Vaneet Sharma, Josh Klaene, Adam Hall and Amol Kafle and former members, Kristen Randall, Susie Bird, Christine Andrews, Caroline Flarakos, Jack Cunniff and Yuriy Dunayevskiy. Yuriy and Jack donated two mass spectrometers that enabled me to complete my work.

I was lucky enough to have some good friend both at Northeastern and outside Northeastern who saw me though graduate school: Kyle, Chris, Lenny, Milos, Ben, Adam, Linda, Susel, Sahar, Krytsal, Linnet, Richard, Cat, Francisca and Shiku thank you for all your support and for your friendship.

Last and most importantly my sincere gratitude to my family in Kenya and in the U.S.A. First a thank you to my parents for their unwavering faith in me and for their support throughout my life and for the opportunities you provided that enabled me to pursue my dreams. To my brothers thank you for always being there. To my cousins Wanja and Njoki you gave me a home when I first came to the U.S.A and guided me as I adjusted to life in this strange land thank you. Mwaura, Mwaniki, Dun and Georgina and aunt Charity, you have all stood by me I would not have made it without you. Love you always!
DEDICATION

For my Mother.
TABLE OF CONTENTS

Abstract ... 2
Acknowledgements .. 6
Dedication ... 8
Table of Contents .. 9
List of Figures .. 12
List of Tables .. 14
List of Abbreviations .. 15

Chapter 1: The Integration of LC-MS and NMR for the Analysis of Trace Analytes in Complex Matrices .. 18
 1.1 Introduction ... 19
 1.2 Hyphenation of LC-MS and NMR .. 23
 1.2.1 Choice of Mobile Phase for LC-MS-NMR ... 24
 1.2.2 Effect of LC Peak Width on LC-MS-NMR ... 27
 1.3 Online LC-MS-NMR .. 29
 1.3.1 On-Flow (Continuous) LC-MS-NMR .. 31
 1.4 Alternatives to On-Flow LC-MS-NMR .. 35
 1.4.1 Stopped-flow LC-MS-NMR ... 35
 1.4.2 Loop-storage .. 38
 1.4.3 NMR Signal Enhancement by Fraction Collection Combined with Mass Sensitive NMR Probes .. 41
 1.5 Conclusions ... 47
Chapter 2: Application of an Integrated LC-UV-MS-NMR Platform to the Identification of Secondary Metabolites from Cell Cultures: Benzophenanthridine Alkaloids from Elicited Eschscholzia californica (California poppy) Cell Cultures .. 54

2.1 Introduction ... 55
2.2 Project Goals .. 61
2.3 Materials and Methods .. 62
2.4 Results and Discussion ... 68
 2.4.1 LC-UV Profiling of Elicited Cell Cultures ... 71
 2.4.2 Identification of Peak ... 73
2.5 Conclusions ... 89
2.6 References .. 90

Chapter 3: Identification of Metabolites Affected by Dietary Restriction using Electrochemical Detection, Mass Spectrometry, and microcoil NMR and GC-MS 94

3.1 Introduction ... 95
3.2 Project Goals .. 97
3.3 Materials and Methods .. 100
3.4 Results and Discussion .. 106
 3.4.1 Correlation of Analytical Results Across Platforms .. 109
 3.4.2 Metabolite Characterization .. 111
Chapter 4: The Metabolism of Select Vitamin D Analogs and 1α, 25 (OH)2-3-epi Vitamin D3 by Rat Cytochrome P450 24A1 Hydroxylase

4.1 Introduction ... 134
4.2 Biological Relevance of Vitamin D .. 136
4.3 Metabolism of 1α, 25 (OH)2 D3 by CYP 24A1 Hydroxylase .. 137
4.4 Project Goals ... 139
4.5 Materials and Methods .. 141
4.6 Results and Discussions 4.6.1 Metabolism of Analogs by CYP 24A1 145
4.6.2 Metabolism studies of 1α,25(OH)2D3 and 1α,25(OH)2-3-epi-D3 using rat CYP24A1 reconstitution system ... 158
4.7 Conclusions .. 163
4.8 References ... 165

Chapter 5: Preliminary Results and Future Directions

5.1 Preliminary Results ... 170
5.2 Future Directions ... 175
5.3 References ... 176
List of Figures

Figure 1.1 Mass Spectrum of Propanolol ... 25

Figure 1.2 1H NMR spectra of 10 mM sucrose before and after solvent suppression 27

Figure 1.3 Typical LC peak widths compared to the NMR probe’s observe volume 28

Figure 1.4 Online coupling of LC-MS-NMR ... 30

Figure 1.5 On-flow LC-MS-NMR analysis of Beer ... 32

Figure 1.6 UV and MS-based analyte selection for NMR analysis .. 37

Figure 1.7 Stopped-flow and Loop Collection 1H NMR spectra of closely eluting LC Peaks 40

Figure 1.8 Schematic Representation of LC-MS-SPE-NMR ... 42

Figure 1.9 LC-MS-SPE-NMR Analysis of the Glucuronide Metabolite of Paracetamol 45

Figure 2.1 The nanoSplitter Interface .. 59

Figure 2.2 Comparison of segmented flow and flow injection analysis 60

Figure 2.3 The Work-flow used in the identification of Alkaloids .. 70

Figure 2.4 Accumulation of Benzophenanthidine Alkaloids ... 72

Figure 2.5 LC-UV-MS-NMR of 96-hour time-point ... 75

Figure 2.6 MS and NMR results of Sanguinarine .. 77

Figure 2.7 MS and NMR spectra of compound 3 and chelerythrine 80

Figure 2.8 1H spectra of compound 4 and 7 ... 84

Figure 2.9 The BPA pathway .. 88

Figure 3.1 Schematic of LC-EC separation ... 99

Figure 3.2 Analytical Strategy used to Identify Metabolites ... 108

Figure 3.4 LC-EC, LC-MS and 1H NMR analysis of Fraction C10 ... 113

Figure 3.5 LC-UV profile of re-fractionation of D05 ... 115
Figure 3.6 MS/MS and GC-EI-MS fragmentation of Fraction D05_1 ... 117
Figure 3.7 LC-UV profile of D05 and ¹H NMR spectrum of D05_2 .. 118
Figure 3.8 LC-EC and ¹H NMR spectrum of E09 .. 120
Figure 3.9 GC-MS spectra of E09 and indole-3-propionic acid ... 122
Figure 3.10 LC-EC, MS/MS and GC-MS analysis of D06 .. 124
Figure 3.11 EI-MS spectrum of D12 .. 125
Figure 4.1 Biosynthesis and bioactivation of 1α, 25 (OH)₂ Vitamin D₃ ... 135
Figure 4.2 Metabolic pathways of 1α, 25 (OH)₂ Vitamin D₃ .. 138
Figure 4.3 Chemical structures of Vitamin D, its epimer and synthetic analogs 140
Figure 4.4 HPLC profile of lipid soluble metabolites of 1,2 and 3 ... 146
Figure 4.5 EI-MS fragmentation of 1α, 25 (OH)₂ Vitamin D₃ ... 148
Figure 4.6 EI-MS spectra of analog 2 and its metabolite f* .. 151
Figure 4.7 EI-MS spectra of analog 3 and its metabolites g* and h* ... 153
Figure 4.8 ESI-MS analysis of analog 3 and its metabolites g* and h* .. 155
Figure 4.9 HPLC profiles of g* and h* before and after periodate oxidation 156
Figure 4.10 Comparison of rate of metabolism of 1,2, and 3 ... 157
Figure 4.11 HPLC profile of water soluble metabolites of 1 and 4 .. 159
Figure 4.12 GC-MS spectra of water soluble metabolites of 1 and 4 .. 160
Figure 4.13 Comparison of the metabolism of 1 and 4 .. 162
Figure 4.14 The C24 oxidation pathway of 1α,25 (OH)₂ D₃ and 1α,25 (OH)₂-3epi-D₃ 164
Figure 5.1 Flow chart of Metabolite Concentration .. 171
Figure 5.2 Comparison of metabolite extraction with and without citric acid 174
List of Tables

Table 1.1 Summary of Advantages and Disadvantages of MS and NMR ... 23

Table 2.1 Table of Alkaloid Masses .. 78

Table 3.1 Correlation of LC-MS and LC-EC .. 110

Table 3.2 Metabolites identified from Human Plasma ... 127
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α.25 (OH)₂ D₃</td>
<td>1α, 25-dihydroxy vitamin D₃</td>
</tr>
<tr>
<td>1α.25 (OH)₂-3-epi- D₃</td>
<td>1α, 25-dihydroxy-3-epi-vitamin D₃</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4-dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>25 (OH)D₃</td>
<td>25-hydroxyvitamin D₃</td>
</tr>
<tr>
<td>5MA</td>
<td>5-Methoxyindole acetate</td>
</tr>
<tr>
<td>ADR</td>
<td>Adrenodoxin Reductase</td>
</tr>
<tr>
<td>ADX</td>
<td>Adrenodoxin</td>
</tr>
<tr>
<td>BBE</td>
<td>Bereberine Bridge Enzyme</td>
</tr>
<tr>
<td>BPA</td>
<td>Benzophenanthridine Alkaloids</td>
</tr>
<tr>
<td>CHE</td>
<td>Chelerythrine</td>
</tr>
<tr>
<td>CID</td>
<td>Collisonally Induced Dissocaiation</td>
</tr>
<tr>
<td>CYP24A1</td>
<td>Cytochrome P450 24A1 hydroxylase</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode Array Detector</td>
</tr>
<tr>
<td>DHBPA</td>
<td>Dihydrobenzophenanthridine alkaloids</td>
</tr>
<tr>
<td>DHCHE</td>
<td>Dihydrochelerythrine</td>
</tr>
<tr>
<td>DHSA</td>
<td>Dihydroxysanguinarine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DNP</td>
<td>Dynamic Nuclei Polarization</td>
</tr>
<tr>
<td>DSS-d₆</td>
<td>4,4, dimethyl-4-silapentane-1-sulfonic acid</td>
</tr>
<tr>
<td>DW</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>EC</td>
<td>Electrochemcal Detection</td>
</tr>
<tr>
<td>EI</td>
<td>Electron Impact</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray Ionization</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
</tr>
<tr>
<td>FIA</td>
<td>Flow Injection Analysis</td>
</tr>
<tr>
<td>FID</td>
<td>Free Induction Decay</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh Weight</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HCD</td>
<td>High Collision Dissociation</td>
</tr>
<tr>
<td>HESI</td>
<td>Heated Electrospray Ionization</td>
</tr>
<tr>
<td>HMDB</td>
<td>Human metabolome database</td>
</tr>
<tr>
<td>HTS</td>
<td>High Temperature Superconductors</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I3AA</td>
<td>Indole-3-Acetic ACid</td>
</tr>
<tr>
<td>I3LA</td>
<td>Indole-3-Lactic Acid</td>
</tr>
<tr>
<td>I3PA</td>
<td>Indole-3-Propionic acid</td>
</tr>
<tr>
<td>IPK</td>
<td>Isolated Perfuse Kidney</td>
</tr>
<tr>
<td>ISA</td>
<td>Indoxyl Sulfate</td>
</tr>
<tr>
<td>KHz</td>
<td>kilo Hertz</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid Chromatography</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>mV</td>
<td>milivolt</td>
</tr>
<tr>
<td>NAA</td>
<td>α-napthalene acetic acid</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>Sodium Borohydride</td>
</tr>
<tr>
<td>NaIO₄</td>
<td>Sodium periodate</td>
</tr>
<tr>
<td>nESI</td>
<td>nano electrospray Ionization</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PYE</td>
<td>Purified Yeast Extract</td>
</tr>
<tr>
<td>QBPA</td>
<td>Quarternary benzophenanthridine alkaloids</td>
</tr>
<tr>
<td>rf</td>
<td>radio frequency</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SA</td>
<td>Sanguinarine</td>
</tr>
<tr>
<td>SFA</td>
<td>Segmented Flow Analysis</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>TIC</td>
<td>Total Ion Current</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>TMSOH</td>
<td>Trimethylsilanol</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet Detection</td>
</tr>
<tr>
<td>VWD</td>
<td>Variable wave detector</td>
</tr>
<tr>
<td>XIC</td>
<td>Extracted Ion Chromatogram</td>
</tr>
</tbody>
</table>
Chapter 1:

The Integration of LC-MS and NMR for the Analysis of Trace Analytes in Complex Matrices
1.1 INTRODUCTION

The unambiguous identification of known - and more importantly unknown - analytes in complex mixtures requires the use of chromatographic separation coupled to detectors that give high structural information. Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) are the two most widely used techniques for structural identification of compounds. The work presented in this thesis utilizes mass spectrometry (coupled to gas chromatography (GC) or liquid chromatography (LC)) together with subsequent NMR for elucidation of low molecular weight compounds (molecular weight below 2,000). The coupling of these techniques and more so the hyphenation of LC-MS and NMR is not trivial and requires compromises both in instrumentation and method development. In this chapter, an overview of the analytical challenges associated with hyphenation of LC-MS and NMR, and the steps taken towards overcoming these challenges is discussed. GC-MS is a mature technique thus the hyphenation of GC to MS is not covered.

Since the development of electrospray ionization, mass spectrometry combined with liquid chromatography (LC-MS) has become the method of choice for structural identification of analytes found in complex mixtures, due to its high sensitivity and selectivity [1-3]. The limits of detection of MS are comfortably in the femt mole range for analytes with high ionization efficiency. The LC separation greatly reduces the complexity of samples in MS, which in turn reduces ion suppression, by reducing the number of charged analytes entering the mass spectrometer at any one time, thus reducing competition for the amount of charge available at any one time [4-6]. MS provides molecular weight information and from exact mass measurements the elemental composition of compounds can be deduced [7]. Furthermore,
tandem mass spectrometry (MS/MS) provides structural information of compounds based on their fragmentation patterns [8-11]. LC-MS is also very fast; spectral scan rates for MS are in the nanosecond to microsecond range depending on the mass analyzer. In combination with fast chromatography it is ideal for high-throughput analysis [11]. A limitation of mass spectrometry, however, is that it does not provide unambiguous structural identification of compounds in the absence of authentic standards. Definitive structural identification by LC-MS is usually based on comparison of the retention time and the MS/MS spectral pattern of the analyte of interest, with those of an authentic standard [10, 12, 13].

NMR is generally accepted as the method of choice when more definitive structural characterization is needed. The NMR phenomenon is based on the interaction of nuclei with an external magnetic field. In principle, any magnetically active nucleus is detectable by NMR; however, due to the low sensitivity of most nuclei, those primarily studied in NMR are 1H, 13C, 19F and 31P. 15N is also frequently studied but it is detected indirectly through attached 1H [14, 15]. Structural information from NMR is deduced from the chemical shift which is dependent on how shielded a nucleus is by surrounding electrons. Structural information is also gained from mutual splitting of signals which provides information on the number of neighboring nuclei, and from multi-dimensional experiments which indicate atomic connectivity [14, 15]. NMR has the advantage of being non-destructive so, after NMR analysis, a sample can be recovered and analyzed further using other techniques [14]. Also, unlike MS, the NMR signal strength is not affected by matrix effects, so NMR is intrinsically quantitative [16]. NMR of pure compounds or simple mixtures requires little or no sample preparation; however, when complex mixtures are analyzed, separation of the mixture into their individual components is required in order to
reduce spectral complexity caused by overlapping signals. This has led to the coupling of LC to NMR to streamline the separation of compounds prior to NMR [17-19].

NMR and LC-NMR are, however, limited by the intrinsically low sensitivity of NMR. The low sensitivity of NMR is because the energy gap between the low energy and high energy states is extremely small at room temperature (only 1 in 10,000 molecules produce signal) making the sample requirements 100-fold higher than for MS. Because of this low sensitivity, NMR also requires long observation times to increase the signal to noise ratio (S/N) especially for low concentration analytes [14, 19]. The observation times range from minutes to hours for a simple 1H spectrum, and hours to days for 2D experiments at the low microgram level and for the analysis of low sensitivity nuclei like 13C which are particularly useful in the structural analysis of unknowns. In light of these limitations, several strategies have been developed to allow the routine use of NMR in the analysis of low concentration analytes [20]. One approach is the development of higher field spectrometers as an increase in spectrometer frequency by a factor of three leads to a 5.2-fold increase in S/N (e.g. from 300 MHz to 900 MHz). Moving to higher fields primarily improves resolution which is useful in highly crowded spectra e.g. in proteins, high field spectrometers are however very expensive [20, 21]. A second approach is the development of highly sensitive NMR probes of which the principal approaches are small probes (microcoil probes) and cryogenically cooled probes or high temperature superconducting probes (HTS). Cryoprobes and HTS probes improve sensitivity by reducing the noise from the electronic components; the electronics are kept at about 20K while the sample is at room temperature, which leads to a four-fold improvement in S/N for organic solvents and two-fold for aqueous solvents, when compared to a room temperature probe of the same dimensions [22,
Microcoil probes have reduced coil dimensions, which lead to a reduction in noise leading to an increase in signal. In addition, due to the probe’s small observe or active volumes (the portion of the sample that is within the rf coil of the probe and is the only portion of sample that contributes to signal) which are as low as 1.5 µl, analytes are dissolved in low volumes of solvent which increases their concentration [24, 25]. NMR signal enhancement has also been achieved by dynamic nuclear polarization (DNP) which involves the transfer of magnetization from electrons to nuclei spins (electrons have an electronic polarization that is 660 times larger than a proton and 2500 times larger than ^{13}C) S/N improvements of as much as 10000 have been achieved for ^{13}C nuclei [26]. DNP however requires additional specialized instrumentation and is applicable to only a few types of samples [27].

In the analysis of unknowns, MS and NMR provide complementary data and both are often required. While MS cannot distinguish isobaric and stereoisomeric compounds, those are distinguishable by NMR. On the other hand, MS can identify certain functional groups such as sulfate and nitro groups which do not contain protons [28]. These complementary capabilities of MS and NMR have led to complementary applications of both techniques in the analysis of compounds that cannot be characterized with either detector alone in fields such as natural product discovery, metabolomics and drug metabolite identification.

The advantages offered by each one of these techniques outlined in Table 1.1 can best be realized through the analysis of individual compounds in as pure a form as possible. As such, their coupling to chromatographic separation methods, specifically HPLC, provides an optimum approach for their application in a broad spectrum of bioanalytical problems, which is the subject of this chapter. The challenges associated with the integration of HPLC, MS and NMR and the
several approaches taken towards overcoming their mutually incompatible features in order to create an efficient analytical platform will be discussed.

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS (LC-MS)</td>
<td>• Provides Molecular Weight</td>
<td>• Suffers from matrix effects (mitigated by LC)</td>
</tr>
<tr>
<td></td>
<td>• Sensitive (LODs 10^{-12}–10^{-21} mol)</td>
<td>• Structural identification requires comparison with authentic standards</td>
</tr>
<tr>
<td></td>
<td>• Specific (MS/MS)-Fragmentation patterns unique to specific analytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fast</td>
<td></td>
</tr>
<tr>
<td>NMR (LC-NMR)</td>
<td>• Detailed structural information (multi-dimensional experiments)</td>
<td>• Low sensitivity (LODs 10^{-6}–10^{-12} mol)</td>
</tr>
<tr>
<td></td>
<td>• Non-destructive</td>
<td>• Long acquisition times for low conc. and Multi-dimensional experiments.</td>
</tr>
<tr>
<td></td>
<td>• Inherently quantitative</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1: A summary of the advantages and limitations of MS and NMR.

1.2 HYPHENATION OF LC-MS AND NMR.

Online coupling of LC-MS and NMR in a single integrated system would provide all structural information of a sample in a single injection, while minimizing sample preparation, and reducing the potential of sample degradation though drying. The online coupling of LC-MS and NMR was first reported by Pullen et al. in 1995 [29]. The coupling of LC to NMR required the commercial development of flow NMR probe; because conventional NMR uses tubes [30, 31].
In the development of a hyphenated analytical method, (e.g. LC-MS, GC-MS, LC-NMR, etc.) it is essential to consider the features which make them compatible and/or incompatible and the complexity of hyphenating them. For the online hyphenation of LC-MS and NMR, the technical considerations required for their successful integration are summarized below.

1.2.1 Choice of Mobile Phase for LC-MS-NMR:

The mobile phases commonly used in reversed-phase HPLC are acetonitrile or methanol as the organic mobile phase and water as the aqueous mobile phase. All of these solvents have protons at concentrations of 30-100 M, and these strong signals can mask the NMR signal of low concentration analytes [32, 33]. To reduce interference from the mobile phase resonances, deuterated solvents are preferably used for separation but due to cost often the organic phase is used in its protonated form and water is substituted with D$_2$O which is relatively inexpensive. However, the use of deuterated water in 1H NMR, masks exchangeable (active) hydrogens i.e, -SH, -NH, -OH because of their rapid exchange with the solvent. Deuteration can also shifts the mass-to-charge (m/z) ratio of analytes of interest, and slightly changes the retention time of the analytes relative to the protonated form [34, 35]. Deuterium incorporation has to be taken into account when interpreting mass spectra, especially so when an analyte is partially deuterated which leads to observation of several masses for the same analyte [34, 36]. For example, Figure 1.1 shows the mass spectrum of propranolol obtained from a LC-MS-NMR experiment that utilized deuterated water and acetonitrile (protonated) for separation. Two masses at m/z 262 and m/z 263 are observed due to partial H/D exchange [34]. To account for the changes observed in LC and in MS, an initial LC-MS separation with non-deuterated mobile phases is first done then compared with one in the deuterated solvent. Differences between data with and without
deuterated solvents can often assign the number of exchangeable protons, which is useful for structural characterization [34, 37]. An alternative technique for mass spectrometry is to introduce a “make-up” flow with an excess of non-deuterated solvent between LC and MS analysis so, that deuterated protons can back-exchange [38].

Figure 1.1 The mass spectrum of propranolol (molecular weight 259) obtained during an LC-MS-NMR (mobile phase D$_2$O and protonated acetonitrile), shows masses at m/z 262 and m/z 263 from different states of deuteration. Reprinted from ref. [34] with permission.

When non-deuterated solvents are used for LC-MS-NMR, interference from the solvent resonance can be reduced through its selective suppression which enhances analyte signal [39, 40]. The residual water resonance which is observed in all NMR solvents may also require suppression [40]. **Figure 1.2** shows NMR spectra of a 10 mM sample of sucrose before and after solvent suppression. Suppression of the residual water resonance at 4.5 ppm and the acetonitrile
resonance at 2 ppm increases the analyte signal 100-fold [40]. Solvent signal suppression however tends to also suppress resonances in close proximity to that of the solvent. Suppression of the water signal can also lead to suppression of exchangeable protons which are in fast exchange with water [17, 41].

Modifiers and buffers that are added to the mobile phase to improve the peak shape of ionic compounds and to ensure reproducible retention times in LC, and for ionization of analytes in MS, can also produce high background in online LC-MS-NMR [17, 42]. For NMR, additives that do not have protons are preferred, while for MS, additives that will not interfere with the ionization process are preferred. Buffers that are NMR friendly are generally incompatible with ESI because most are non-volatile and can clog the ion source (e.g. sodium phosphates). Other additives like trifluoroacetic acid (TFA), which is NMR friendly, is volatile and a great ion pairing reagent, leads to ion suppression in MS especially of acidic analytes due to its high conductivity and high surface tension. In addition, TFA ion pairs with acidic analytes and neutralizes them, which makes them undetectable in MS [43]. Formic acid has been found to be the best compromise for both MS and NMR. Although it has a sharp proton resonance at 8.5 ppm, this single sharp signal is easily suppressed [34].
Figure 1.2 10 mM sample of sucrose analyzed by LC-NMR (mobile phase 50:50 D₂O: acetonitrile), before suppression of solvent resonance (Top Spectrum). Selective suppression of the solvent resonances at 2 ppm (acetonitrile) and 4.3 ppm (residual water) lead to the enhancement of the analyte signal (bottom spectrum). Reprinted from ref. [40] with permission.

1.2.2 Effect of LC Peak Width on LC-MS-NMR

Signal in NMR is proportional to the amount of analyte present in the NMR probe’s active volume. Flow probes used in LC-MS-NMR have observe volumes of 60-250µl. A 60 µl volume is equivalent to 8 seconds of flow at a flow rate of 1 mL/minute. Typical LC peaks are usually 10-90 seconds wide (Figure 1.3), which means that only a fraction of the available analyte produces NMR signal which further reduces the overall sensitivity [44]. Because the probe dimensions cannot be changed, the residence time of the analyte can be increased by reducing
the LC flow rate, or by stopping the LC pump to ensure the acquisition of more scans[17, 45]. This can compromise LC, leading to broader peaks through diffusion [17]. An alternative is the use of capillary LC which typically has sharper peaks but the capillary LC columns have a 10-fold lower loading capacity than analytical columns which limits them for NMR analysis especially of low concentration analytes [19, 46].

The above discussion illustrates the disparate requirements of these three analytical techniques and the challenges involved in their incorporation into an integrated platform. The approaches taken to overcome these disparities are discussed next.

Figure 1.3 A 120µL flow probe (left), some typical LC peak widths compared to the NMR probe’s volume. Reprinted from ref. [44] with permission.
1.3 LC-MS-NMR

HPLC can be interfaced to both MS and NMR, either in series or in parallel as shown in Figure 1.4. When connected in series, (Figure 1.4A) after LC separation the eluent passes first through the NMR detector which is non-destructive, and is then followed by MS analysis. Due to the differences in sample requirements between MS and NMR, the flow is split before MS analysis, with the majority directed to waste and the rest to the MS system. This mode has not been extensively used because it is difficult to correlate the results from each detector as the analytes are sampled at different times in each detector [37].

Parallel detection by MS and NMR is the more extensively used approach of hyphenating LC-MS and NMR (Figure 1.4B). In this mode, the LC eluent is split at typical ratios of 1:5 or 1:20 between the MS and the NMR with the majority of the flow directed towards the NMR and the smaller fraction to the MS system[17].

Online LC-MS-NMR data can either be acquired simultaneously on both detectors, or the NMR experiment can be temporarily decoupled from the LC-MS to allow for enhancement of the NMR S/N.
Figure 1.4: Online coupling of LC-MS-NMR, in series (A) and in parallel (B). In series, after LC separation, the LC eluent passes through the NMR, and directed to the MS after completion of the NMR experiment. In parallel, the LC eluent is split between the MS and NMR with most of the flow directed towards the NMR due to the low sensitivity of NMR.
1.3.1 On-flow (Continuous) LC-MS-NMR

On-flow or “continuous mode” LC-MS-NMR is characterized by simultaneous and continuous acquisition of MS and NMR data. A second detector, usually a UV detector, is used to trigger the transfer of the analyte to both the MS and the NMR. The transfer lines between the MS and the NMR are first calibrated to co-ordinate the operation of the two detectors [17].

Data in the on-flow mode are generally displayed as a contour plot of stacked 1H or 19F spectra with the retention time displayed on the vertical scale and the chemical shift on the horizontal scale. Figure 1.5 shows a typical depiction of on-flow LC-MS-NMR results, in this case used in the determination of carbohydrates in beer [47]. Figure 1.5A shows the LC-NMR results displayed as a pseudo-2D contour plot, the LC retention time is on the vertical axis and the chemical shift on the horizontal axis. The 1H NMR spectra corresponding to each component based on the retention time are extracted from each contour (Figure 1.5B). The MS data (Figure 1.5B) of each analyte are recorded concurrently with the NMR data. In this specific case, the MS results detected the presence of polysaccharides in the beer while the NMR results indicated whether the oligomers observed were branched or straight. Straight oligomers have α (1→4) glycosidic linkages while branched oligomers have α (1→6) glycosidic linkages. These two configurations have distinct chemical shifts of the 1Hs at α (1→4) and α (1→6) positions. In the on-flow mode however, the NMR results of some analytes were inconclusive due to their low concentrations, as indicated for the compound with the retention time of 16.6 minutes [47].
Figure 1.5 On-flow LC-MS-NMR analyses of Carbohydrates in Beer. A. Contour plot representation of the LC-NMR results. B. 1H NMR spectra (Right) extracted from A. Positive ion MS (Left) results recorded concurrently with NMR results. Reprinted from ref. [47] with permission.
In addition to the considerations of solvent composition and LC peak width, use of on-flow LC-MS-NMR also need to take into account the effect of gradient elution and the flow rate of the mobile phase. These factors mainly affect the NMR [17]. Specifically for separation of mixtures, the wide differences in polarities of analytes benefit from the use of gradient elution whereby the percentage of the organic mobile phase is increased over time to give better separation of multiple components in the mixture. Gradient elution is problematic in NMR because it leads to broadening of resonances (reduced resolution) in the NMR dimension. This is due to a gradient of magnetic susceptibility in the NMR probe caused by the constant change in the mobile phase composition within the probe. Magnetic inhomogeneity can be reduced by using shallower gradients [17, 32, 33].

Gradient elution also affects the chemical shifts of the analytes under investigation. The chemical shift in NMR is highly dependent on the solvent. Thus, under gradient elution, where the solvent (mobile phase composition) is constantly changing, the chemical shifts of the analytes also change. For example, a 1% change in solvent composition can shift the solvent resonance by up to 15 Hz [17, 32, 33, 48]. The shift in the solvent resonance can complicate solvent suppression as it is difficult to predict where the solvent is located. To allow for solvent suppression, a scout scan is usually first performed to establish the location of the solvent resonance [32, 33].

On-flow LC-MS-NMR is also affected by the flow rate used for elution. Due to the higher sample requirements in NMR as compared to MS, analytical columns with a loading capacity of >100 μg are used to ensure the presence of enough material for NMR. The optimal flow rate for these columns is in the mL/minute range, which has a negative effect on both MS and NMR. The effect of the high flow rate is reduced in MS because the flow is split with the majority directed
to the NMR. For NMR however, higher flow rates reduce the residence time of the analytes in the NMR probe which leads to acquisition of fewer scans. As a result the use of NMR is limited to the analysis of only high concentration samples due to the short residence time of analytes in the probe. Reduced flow rates can increase the residence time for NMR analysis but lead to broadening of the LC peaks. Flow rates of between 0.1-0.4 mL/minute have been found to be a good compromise to increase the residence time in the NMR probe with acceptable broadening of LC peaks [17, 49].

Although the limits of detection (LOD) in the on-flow mode are relatively high (LODs are between 5-10 µg) due to the short residence time of a sample in the NMR probe, on-flow LC-MS-NMR is useful as a screening tool to give an overview of proton (and in some cases fluorine) carrying compounds eluting from an LC column. On-flow LC-MS-NMR has found applications mainly in the identification of drug metabolites, and has especially been useful in identifying metabolites from fluorine containing compounds [28, 50]. Fluorine containing compounds are relatively common in drug design thus the use of 19F NMR is highly diagnostic especially because 19F NMR spectra are less crowded than 1H NMR spectra [28, 50].

In addition to metabolite identification, on-flow LC-MS-NMR has been used as a screening tool in the field of natural product whereby it is used to provide an overview of a plant extract to eliminate known compounds (dereplication) and also to confirm if there are co-eluting species which even if they co-elute, can be distinguished in either in NMR or in MS [17, 45, 51]. Other applications include quality control in the beverage industry [47]. It has also been used as a screening tool in metabolomics [36] and in the characterization of degradation products in the pharmaceutical industry [52]. In all his applications however, on-flow LC-MS-NMR does not
provide detailed structural information which is a requirement for structural elucidation of unknowns.

1.4 ALTERNATIVES TO ON-FLOW LC-MS-NMR

Due to the lower sensitivity of NMR when compared to MS, alternative methods to continuous flow LC-MS-NMR have been developed that temporarily decouple the MS and NMR analyses. These methods increase NMR sensitivity either by allowing for longer acquisitions of NMR data or by increasing analyte concentration. These approaches permit acquisition of NMR data of low concentration analytes, acquisition of low sensitivity nuclei (i.e. 13C or 15N) and, for acquisition of 2D NMR experiments which are often required for complete structural characterization of unknowns. Alternatives to on-flow LC-MS-NMR include stopped-flow, LC peak collection into loops and LC peak pre-concentration using either solid phase extraction (SPE) or guard columns or by collecting and drying fractions on well-plates each will be discussed.

1.4.1 Stopped-flow LC-MS-NMR

Stopped-flow LC-MS-NMR is used to increase the short residence time in on-flow LC-MS-NMR by stopping the LC pump when the analyte of interest reaches the NMR probe. This allows for acquisition of more scans for detection of low concentration analytes (LODs for 1H NMR in stopped-flow mode are ~100 ng) [17]. It should be noted that the S/N in NMR increases with the square root of the number of scans, thus to double the S/N, the number of acquisitions has to be quadrupled [14]. The stopped-flow LC-MS-NMR mode also enables the acquisition of more time-consuming 2D NMR and also allows for acquisition of spectra from low sensitivity nuclei like 13C for detailed structural analysis [53]. An additional advantage realized through stopped-
flow NMR is that, because acquisitions are performed under static conditions, magnetic homogeneity is maintained and solvent resonances remain constant for suppression [17, 32, 33, 37, 53].

In the stopped-flow mode, the LC pump is stopped when the analyte of interest is in the NMR probe. This can be triggered by either a UV and/or the MS-detector, thus delays must be calibrated and prior knowledge of the elution patterns of analytes of interest is an advantage [17]. The use of the MS to determine when the LC pump should be stopped has an advantage over UV in detecting analytes that do not contain a chromophore or for compounds with a low UV absorbance. Even more specificity on peak selection can be achieved by use of tandem MS (MS/MS), whereby a particular MS/MS transition can be used to trigger when the LC pump should be stopped [17, 53, 54]. Figure 1.6 shows an example of the analysis of apple peel extracts by LC-MS-stopped-flow NMR. Apple peel extracts contain two classes of flavonoids, quercetin and phloretin glycosides, which have antioxidant properties [54]. Quercetein and phloretin have distinct UV absorbance and MS spectra thus both are used to trigger the stopping of the LC pump for NMR analysis. As shown with the UV and MS chromatograms (Figure 1.6) of quercetein, MS is much more selective than UV because multiple compounds with different masses can have the same UV absorbance. [54].
In addition to targeted peak picking, stopped-flow LC-MS-NMR can also be acquired in a time-slicing mode, whereby an LC chromatogram is analyzed in short intervals. This is especially useful when analyzing co-eluting compounds, when the retention time is unknown (for non-targeted analysis) or for analysis of compounds with poor ionization or which have a weak UV chromophore [17, 51].
The stopped-flow mode of LC-MS-NMR operation received a strong boost in NMR sensitivity, by the development of cryoflow probes [55]. The performance of the cryoflow probe was demonstrated in the analysis of metabolites from acetaminophen [55] and the results compared with results from previously published LC-MS-NMR studies that had utilized a conventional flow probe [36, 55]. The experiments with the cryoflow probe utilized 40% less material and allowed for detection of metabolites that had not been previously detected [55]. This study demonstrated the potential of cryoprobes in LC-MS-NMR not only in detection of low concentration analytes but in addition, the reduction in NMR analysis time, allowed the detection of easily degradable samples [55].

The main limitation of stopped-flow LC-MS-NMR is diffusion mediated peak broadening which can lead to peak-to-peak contamination of closely eluting compounds. This can however be circumvented by the use of gradient elution in LC rather than isocratic elution. Stopped-flow LC-MS-NMR also suffers from contamination of the NMR probe, when a low concentration sample is run immediately after one of high concentration [17].

1.4.2 Loop storage

An alternative to stopped-flow LC-MS-NMR is loop collection of analytes of interest prior to NMR analysis [17, 54, 56, 57]. This avoids the need to stop the LC pumps for NMR analysis by directing the LC flow to capillary loops which are matched to the NMR probe active volume[56]. This approach avoids diffusion mediated broadening of the LC peak but still allows for the improvement of NMR S/N through signal averaging or for 2D experiments. As in the stopped-flow mode, peak selection for NMR may be done either by MS or by UV. The NMR
experiments are usually performed after completion of LC-MS analysis. The loops can also be stored indefinitely before NMR analysis if the samples are stable and do not degrade [17, 54, 56].

Loop collection can eliminate carry-over contamination of low concentration compounds if they are analyzed after high-concentration analytes, which is sometimes observed in the stopped-flow. **Figure 1.7** shows an example of two compounds analyzed in the loop collection mode and in the stopped-flow mode, where their retention time differs by 0.4 minutes. In the stopped-flow mode, carryover of peak 1 to peak 2 is observed but is not observed in the loop collection mode. Carryover can be completely eliminated under loop collection because the probe can be flushed with solvent prior to NMR analysis [17, 18].
The main limitation of loop collection as with both on-flow and stopped-flow LC-MS-NMR, is that deuterated solvents are still required for separation. Loop collection also requires more complicated fluidics than stopped-flow mode [17, 18]. However, the loop collection interface comes standard with most LC-NMR instruments.
1.4.3 NMR Signal Enhancement by Fraction Collection combined with Mass-Sensitive NMR probes.

Another approach of enhancing NMR sensitivity in hyphenated LC-MS-NMR is to concentrate analytes of interest after the LC separation but prior to NMR analysis. This is often done either by post-column trapping on guard columns or SPE cartridges, or by fraction collection on tubes. This is followed by drying and re-suspending of the concentrated LC-peaks into a small volume of deuterated solvent. Either way, the concentrated analyte is transferred into a small-volume NMR probe (smaller probes have better mass sensitivity). The most sensitive NMR probes are cryoprobes and microcoil probes. When fractions are concentrated, the NMR experiment may be temporarily decoupled or completely offline from the LC-MS experiment. Chapters 2 and 3 of this dissertation demonstrate the offline coupling of LC-MS and NMR using a microcoil probe.

Post-column trapping of analytes for NMR was first demonstrated by Griffiths et.al using a guard column for analyte enrichment[58]. This method has evolved and analyte trapping is widely done on solid-phase extraction (SPE) cartridges (a SPE fraction collector is commercially available) [59]. Post-column trapping on SPE or guard columns is similar to 2D LC whereby a mixture is first separated on one column and, as each analyte elutes, it routed to a second column. For LC-MS-NMR, separation is done on a large diameter column (first LC column) with a high loading capacity which provides enough material for NMR. The second LC column i.e. SPE or guard columns, has a smaller diameter columns and it is used to concentrate the sample for NMR [60-62]. The instrumental set-up for LC-MS-NMR is shown on Figure 1.8. To ensure components of interest are trapped onto the cartridges, a make-up flow with aqueous solvent is added to the enrichment columns prior to peak trapping which reduces the eluotropic
strength of the mobile phase [59]. A ratio of 3:1 of the make-up flow to the strength of the mobile phase is typically used. The flow rate of the make-up flow is typically between 2.5-5 mL/minute, these higher flow rates however, lead to high pressure on the trapping cartridge which has been known to inadvertently elute the analyte from the cartridge [60]. After analyte trapping, cartridges containing analytes of interest are then dried with nitrogen to remove residual mobile phase, and finally eluted in deuterated solvents into the NMR probe.

Figure 1.8 Schematic representation of LC-MS-SPE-NMR instrumentation set-up. Reprinted from [59] with permission.
LC-MS-SPE-NMR adds another chromatographic step into the analysis, and requires that a method is developed to ensure efficient trapping of analytes onto the SPE cartridges and the efficient transfer of trapped analytes into the NMR probe. Efficiency in trapping and elution are highly dependent on the analyte of interest [60, 62-64]. Analyte trapping is influenced by the choice of sorbent material, which is a compromise in the analysis of complex mixtures which have different analytes - a single sorbent might not work for all analytes in a particular mixture [60, 64]. Clarkson et al. investigated the trapping efficiency of eight SPE phases for 25 model natural products with a variety of polarities. Overall, the authors found that hydrophobic compounds were retained on most phases but that hydrophilic and charged compounds were best retained on polymeric phases made from poly(divinylbenzene) as compared to silica-bonded phases (e.g –C18) [60]. After choosing the right sorbent material, another consideration in LC-MS-SPE-NMR is the choice of solvent used to elute and transfer the analyte into the NMR probe, which is also highly dependent on the analyte of interest. Deuterated methanol and acetonitrile are the most commonly used solvents for analyte transfer because they are used as organic mobile phase for reversed-phase LC separation. Thus it is generally assumed that the analyte will be eluted from the cartridge using acetonitrile or methanol. However, as with the choice of sorbent material, in the analysis of mixtures, analytes may behave differently. Additionally, because it is desirable to elute the trapping cartridges with a small volume of solvent for NMR analysis elution from the cartridge may be incomplete leading to analyte loss [64, 65].

Fraction collection on well plates or tubes is a cheaper alternative to the use of SPE cartridges. In contrast to the use of post-column trapping, this mode does not add an analytical step and is the
traditional method of doing LC-MS-NMR [66, 67]. Unlike in the LC-MS-SPE-NMR mode, which has mainly been limited to hydrophobic compounds, concentration by drying allows for analysis of hydrophilic compounds, because any validated LC method can be used, including separation using HILIC-LC which is mainly for hydrophilic compounds. In this mode, the NMR experiment is completely decoupled from the LC-MS (demonstrated in Chapters 2 and 3). Plates do often contain plasticizer phthalates which can contaminate analytes of interest. Generally, however, the phthalates can be eliminated by washing plastic-ware with organic solvents prior to use [68].

Pre-concentration of analytes of interest prior to NMR analysis has several advantages. The main advantage is that the amount of material for NMR can be increased by repeated collection of the same analyte through multiple LC injections [61, 69]. As shown in **Figure 1.9**, multiple trapping of an analyte of interest reduces the NMR experimental time exponentially with a linear increase in analyte concentration. In this specific case, by making three repeat trappings, the experimental time is reduced ten-fold and all the proton resonances are still observable [69]. With the multiple-trapping strategy, enough material can also be obtained for NMR analysis of low concentration analytes or for acquisition of 2D NMR experiments necessary for *de novo* structural elucidation [59, 61, 64, 65]. It should be noted, however, that when trapping on SPE cartridges, overloading the SPE cartridges can lead to sample loss. The columns used for LC-MS-NMR applications are typically 2 mm internal diameter columns which have a maximum loading capacity of 50 µg.
Figure 1.9 LC-MS-SPE-NMR analysis of the glucuronide metabolite of paracetamol. Single trapping on a SPE cartridge require 1024 scans (NS) while with triple trapping, the NMR time is reduced 10-fold. Reprinted from [69] with permission.

Another advantage of these modes of offline LC-MS-NMR is the LC separations may use non-deuterated solvents which greatly reduces expense and avoids adjusting chromatography for differences in elution. Importantly for mass spectrometry, the interpretation of mass information is more straightforward without deuterium exchange, and in NMR, because aprotic deuterated solvents may be used, exchangeable protons are observed [59, 60, 66, 67].
The choice of whether to run the NMR experiment offline or whether to only temporarily decouple it from the LC-MS experiment depends on the application and on the choice of probe. When the NMR experiment is completely decoupled from LC-MS, the use of flow probes is no longer a requirement and tube-based probes can also be used [65]. LC-MS with offline NMR also allows for each method to be developed independently and performed without compromises. Another advantage is when NMR is performed offline from LC-MS, the LC-MS results can be used as a first step in analysis so NMR analysis, which is more time-consuming can be done only when necessary, and targeted to more specific questions [66, 67].

The advantage of using LC-MS results as a first step in analysis has been realized in natural product dereplication [66, 67]. Crude extracts are first separated by LC-MS and compounds are tentatively identified by their molecular weight and fragmentation information. The mass spectra are then searched against various natural product databases and masses that are not found in the databases are then targeted for NMR analysis [70]. Unlike dereplication using on-flow LC-MS-NMR, because pre-concentration LC-MS-NMR methods can utilize more sensitive micro-NMR probes, lower limits of detection are achieved thus requiring less starting material, or identifying low-concentration analytes [66, 67]. This mode of LC-MS-NMR can also be used to identify endogenous metabolites from a metabolomics study whereby the acquired high resolution mass spectra are searched in databases and then NMR is used as a follow-up for structural confirmation (Demonstrated in Chapter 3 of this thesis).

The offline LC-MS and NMR approach also has an advantage in that LC-MS and NMR laboratories are traditionally separate. This is especially useful because although most analytical labs have a mass spectrometer available, the expense of purchasing an NMR spectrometer
restricts their availability and most departments have one or two shared NMR spectrometers. Separating LC-MS and NMR also separates the expertise required into their respective established fields of LC-MS and NMR, obviating the requirement for an expert dedicated team on hyphenated LC-MS-NMR.

1.5 CONCLUSIONS

The use of LC-MS and NMR in the analysis of low concentration analytes in complex matrices has become more popular in recent years due mainly to the improvements in NMR sensitivity, through improvements in cryoprobe and microcoil technologies. To take advantage of the improvements in sensitivity in NMR, it is becoming increasingly clear that NMR should be employed after exhaustive MS analysis.

The use of offline NMR, (after LC-MS analysis) is demonstrated in the second and third chapters of this dissertation. In the second chapter, an integrated LC-MS/NMR platform is introduced. The platform’s merits are discussed in the context of its application in the analysis of cell cultures. In the third chapter, the need for multiple analytical platforms for unequivocal structural elucidation is demonstrated in the analysis of endogenous metabolites in human plasma. In that chapter, offline NMR is combined with electrochemical detection, LC-MS and GC-MS. Chapter 4 highlights the advantages of GC-MS in the elucidation of vitamin D compounds.

1.6 REFERENCES

49. Sandvoss, M., et al., Combination of matrix solid-phase dispersion extraction and direct on-line liquid chromatography–nuclear magnetic resonance spectroscopy–tandem mass spectrometry as a new efficient approach for the rapid screening of natural products::

Chapter 2:

Application of an Integrated LC-UV-MS-NMR Platform to the Identification of Secondary Metabolites from Cell Cultures: Benzophenanthridine Alkaloids from Elicited *Eschscholzia californica* (California poppy) Cell Cultures.

Published in Analytical Methods.

2.1 Introduction

Plant-derived natural products are a rich source of valuable medicines; examples include the painkiller morphine from the opium poppy, the anti-cancer drugs paclitaxel from the Pacific yew tree, and vincristine and vinblastine both from the *Catharanthus roseus* plant [1]. Natural products often have complex structures with multiple stereochemical centers, making them challenging to produce economically through chemical synthesis. Therefore, many plant-derived drugs are still supplied by extracting plant material. These compounds are produced in response to stress and pathogen attack; therefore their production is highly dependent on the season of harvest or on environmental conditions, making their production unpredictable. Furthermore, the supply of the desired natural products may be limited by the availability of the plant, compounded by slow growth rates or over-harvesting [2, 3].

An alternative method to producing natural products is the use of plant cell and tissue cultures, which can potentially produce them reproducibly at higher rates and concentrations than in whole plants. Plant cell and tissue cultures can also produce these compounds in a renewable and scalable way, unlike harvested plants. Plant cell and tissue cultures have already been successfully applied to the large-scale and commercial production of at least fourteen compounds. Paclitaxel production yield in cell cultures is 0.5% by dry weight, compared to only 0.01% by dry weight in harvested yew trees [4, 5].

Plant cell and tissue culture conditions can be manipulated to alter the metabolite profile or to enhance production of a particular compound (s) by adjusting the media or growth conditions, by selecting higher-producing cell strains, or by inducing production with biological elicitors (such as yeast extract) to mimic pathogen attack, even without resorting to genetic engineering [6-8].
Arrays of relevant conditions can be explored in small-scale cultures before scale-up to production levels.

Optimizing metabolite production requires a rapid assay to profile the levels of metabolites in test cultures, and HPLC –UV is the obvious choice for resolving the complexity of the cell cultures. It has a throughput commensurate with the typical number of test growths, tens of samples per day, and can be readily automated for unattended analysis. Sample preparation steps such as liquid-liquid extraction or solid-phase-extraction (SPE) can pre-extract a family of compounds, and are parallelizable for moderate throughput, within a time comparable to setting up cultures [9]. HPLC is also highly repeatable; the retention time of each compound is reproducible enough to identify it relative to a standard. Where detection of one compound of interest would be minimally adequate, a full profiling of the family of metabolites would be valuable to characterize how different inducers or precursors activate and regulate different products or pathways. When coupled to a UV detector alone, however, it is limited by the requirement of a chromophore for detection of compounds of interest. Additionally, in order to structurally identify compounds produced in the cell cultures, LC-UV provides limited information in the absence of an authentic standard for co-injection [10].

To use HPLC for metabolite profiling, the peaks first need to be structurally identified, typically by mass spectrometry (MS) and/or nuclear magnetic resonance (NMR). MS provides molecular weight and, when high resolution instruments are used, the elemental composition of compounds. In addition, tandem MS (MS/MS), provides structural information from fragmentation patterns, although again, it is not always possible to identify structural isomers and, for unequivocal structural identification, authentic standards are required. Tandem MS can
also be used to selectively screen for a particular class of compounds in a complex matrix [11]. The high sensitivity of MS (attomole limits of detection) is not always attained due to its dependence on the ionization efficiency of some compounds or by ion suppression due to matrix effects in complex samples, although this is less of a problem when nanoelectrospray ionization is used [12, 13].

It is generally accepted that NMR gives the most definitive structural information. NMR provides atomic connectivity through chemical shift, and multi-dimensional experiments. It is non-destructive, and is inherently quantitative [14]. During optimization of cell cultures, NMR can be used to identify fingerprints of a particular class of compounds. However, NMR is limited to only the major components as NMR is fundamentally much less sensitive when compared to MS. Also, NMR requires relatively pure compounds thus necessitating a separation step to avoid signal overlap [15-17].

Combining LC-MS and NMR is a powerful platform for initial identification of components in cell/tissue cultures as the two detectors provide complementary information to each other. On-line LC-NMR (and LC-MS-NMR) methods have found some strong applications, but with on-flow NMR acquisition times under one minute, the crude spectra at the limits of detection of LC-NMR (tens of micrograms) restrict its applicability to major components of mixtures. The sensitivity of on-line LC-NMR is also limited by the large volumes of LC peaks (> 100 uL). Larger probes have lower mass-sensitivity when compared to smaller probes; LC peak volumes are usually larger than the probe active volume thus only part of the peak is sampled in NMR [18, 19].
To overcome the conflicting limitations of online LC-MS and NMR, our laboratory developed a sensitive, integrated HPLC-MS-NMR platform that couples online MS with offline microcoil NMR for the analysis of mass-limited samples in complex matrices [20]. This platform provides optimal sensitivity for both MS and NMR by integrating a post-analytical column nanoSplitter with a microcoil NMR probe. By performing NMR offline from LC-MS, the entire peak volume can be concentrated into a smaller NMR detector with >10-fold higher mass-sensitivity and NMR acquisition may be as long as necessary to address questions remaining after review of online LC-MS data.

The nanoSplitter interface was developed a decade ago in the Vouros lab [21], and as shown on Figure 2.1 uses a concentric split design which preserves chromatographic resolution in LC-MS [12, 13, 21]. The nanoSplitter provides nanoelectrospray conditions from 4.6 mm LC columns with most of the LC eluent collected for offline NMR. The 4.6 mm columns are ideal for our applications because they have a high loading capacity (> 100 ug) thus they provide enough material for NMR of components below the 1% level. Although these columns require high flow rates for efficient separation, with the nanoSplitter interface, nanoliter/minute volumes are directed to the mass spectrometer. These low flow rates reduce signal suppression due to the efficiency in desolvation from the smaller electrospray droplets and lead to an increase in MS sensitivity up to 1000-fold when compared to conventional electrospray [12, 13, 21].
Figure 2.1 The nanoSplitter interface used in this work provides nanoelectrospray from normal bore (4.6 mm) HPLC columns. The concentric split preserves chromatographic resolution. Reprinted from ref. [21].

For NMR analysis, we use a solenoidal microcoil NMR probe. The microcoil probe has a reduced coil diameter, which reduces noise leading to increased mass-sensitivity for the limited material collected from LC when compared to conventional probes (5mm). Noise in NMR is proportional to the NMR probe’s coil diameter, therefore reducing the coil diameter decreases background noise which in-turn increases signal. The microcoil probe has a small observe volume thus analytes of interest are dissolved in a small volume of solvent which increases their concentration leading to an improvement in the NMR signal. Samples are typically dissolved in 3-10 µl of solvent, depending on the volume of the probe’s observe volume [22, 23].
Solenoidal microcoil probes are flow-probes which means that they have a large dead volume from the probe’s inlet to the probe’s observe volume. Dead volumes from the probe’s inlet can range from 6 µl to 40 µl when using a sample loader. To facilitate the loading of small volumes of concentrated sample into a microcoil NMR probe through the large dead volume, we are using segmented flow sample loading whereby the analyte is carried as a droplet in an immiscible fluid, which avoids dispersion and can confine all sample into the microcoil probe’s observe volume [24] (Figure 2.2A). If a miscible solvent is used to push the sample into the NMR probe through the large dead volume, due to parabolic flow, the sample diffuses into the push solvent which dilutes the sample (Figure 2.2B).

Figure 2.2 Comparison of segmented flow sample loading (Immiscible fluorocarbon) and Flow injection sample loading. The sample dye is dissolved in DMSO (aqueous solvent). A. The dye sample is pushed using immiscible fluorocarbon and it remains as a discrete plug. B. The dye sample is pushed with a miscible solvent (DMSO) which leads to dispersion and diffusion.
2.2 Project Goal

In this work, we demonstrate the applicability of our LC-MS and NMR platform to the typical case encountered when establishing new cell culture expression system; structural identification of peaks in an LC chromatogram, given one authentic standard of a metabolite of interest. As a model system, the method is applied to extracts of *E. californica*, elicited with a yeast extract to produce benzophenanthridine alkaloids (BPA). The effects of elicitation on *E. californica* cell cultures have been previously investigated using HPLC-UV [25] and a pathway activated by elicitors was proposed in the 1990’s using enzymatic assays [26]. The addition of an elicitor activates the benzophenanthridine alkaloids (BPA) pathway by stimulating the expression of the Berberine Bridge Enzyme (BBE) which catalyzes the formation of (S)-scoulerine, the precursor of BPAs [27, 28]. The BPAs, which include sanguinarine and chelerythrine, are an important class of biologically active compounds which have been investigated for anti-viral, anti-inflammatory, anti-cancer, anti-microbial, and anti-fungal properties [29-32].

The characterization of BPAs from elicited *E. californica* cell cultures has principally been done using preparative LC for conventional NMR [33]. Other published work has focused on the commercially available BPAs sanguinarine and chelerythrine mainly by HPLC-UV and fluorescence studies [34]. Benzophenanthridine alkaloids from sources other than the *E. Californica* have also been reported using mass spectrometry-based methods [35]. Due to the availability of data compiled from the literature over the last 25 years, this system was deemed suitable for evaluation of the applicability of the LC-MS-microcoil NMR platform in the characterization of natural products from elicited cell cultures at the micro-analytical scale. In this study, elicited *E. californica* cell cultures were harvested at different time-points and
profiled using LC-UV. After identifying the optimal conditions which corresponded to the time-point with the most diversity, the products were characterized by LC-MS/MS and microcoil NMR. This study required a total of 200 mg fresh weight (10 mg dry weight) of plant material.

2.3 Materials and Methods

The work in this chapter was done in collaboration with Professor Carolyn Lee-Parsons and her former graduate student Dr. John T. Oldham. All cell culture experiments were performed by John Oldham.

Chemicals

LC-MS grade acetonitrile, water, formic acid, HPLC grade methanol and ethanol were purchased from Fisher Scientific (Pittsburgh, PA). All deuterated solvents were obtained from Cambridge Isotopes (Andover, MA). Fluorocarbon (FC-43) was purchased from 3M (St. Paul, MN). Sucrose, 2, 4-dichlorophenoxyacetic acid, L α-napthaleneacetic acid, sodium borohydride and the benzophenanthridine alkaloids sanguinarine and chelerythrine were purchased from Sigma-Aldrich (St. Louis, MO).

Dihydrosanguinarine and dihydrochelerythrine were synthesized from the sodium borohydride reduction of sanguinarine and chelerythrine respectively [33].

Maintenance and Elicitation of Cell Culture

The E. Californica (California poppy) suspension cultures (cell line ELDN01) were a gift from Dr. Song-Yong Yoon and Dr. Hwa-Young Cho of Pohang Institute of Science and Technology
(POSTECH, Pohang, South Korea). Cell Cultures were maintained and elicited using the previously described method [36].

Cultures were maintained on Linsmaier-Skoog macro- and micronutrients (Caisson Laboratories, Rexburg, ID) supplemented with 30 g/L sucrose (Sigma), 0.37 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D, Sigma), and 0.11 mg/L α-napthaleneacetic acid (NAA, Sigma) and adjusted to pH 5.5 with 1 N NaOH. Sub-culturing was performed every 14 days by pipetting 20 mL of culture (containing 6 mL of packed cells) to 80 mL of fresh media. The cultures were maintained in a rotary incubator at 120 rpm, 22°C with a 16 hour light photoperiod. Sterile water was added weekly to compensate for evaporation.

The purified yeast extract (PYE) for eliciting the cell cultures was prepared as described by Hahn and Albersheim and modified as reported previously [36]. Yeast extract (50 g, Becton-Dickinson, Sparks, MD) was first dissolved in 200 mL of water in a 1 L Erlenmeyer flask; then ethanol was added to a final concentration of 80% (v/v). The mixture was sealed with aluminum and parafilm stored at 4 °C for 4 days. The precipitate settled to the bottom and the supernatant was discarded without filtering. The gummy precipitate was re-dissolved in 200 mL of water and precipitated again with ethanol (80% v/v) and stored at 4 °C. The final yeast extract precipitate was then re-suspended in 200 mL of deionized water, lyophilized for 72 hours, and stored at -20 °C. The PYE stock solution was prepared by dissolving 1 g of lyophilized PYE in 4 mL of water followed by autoclaving for 30 minutes at 121 °C.

For elicitation experiments, 2,4-D was omitted from the media to maximize alkaloid production. After growth for 7 days in 2,4-D free media (exponential phase), 25 mL of culture was
transferred to a 125 mL Erlenmeyer flask and PYE was added to a final concentration of 40 mg of PYE / g fresh cell weight (FW). Cells were harvested after 24, 48, 72, and 96 hours by vacuum filtration, flash frozen in liquid nitrogen, lyophilized for 48 hours, and stored at -20 °C before further analysis.

Alkaloid Extraction

Alkaloids were extracted in 1 mL of methanol containing 0.2% (v/v) HCl as previously described [36]. Cell extracts from the four time-points were first sonicated for one hour, vortexed for 30 minutes, centrifuged for 20 minutes at 13,200 g at 4 °C and finally filtered through a Millex-FH 0.45 µm syringe filter prior to HPLC analysis and LC-MS analysis.

HPLC Analysis

Chromatographic separations of the 24, 48, 72 and 96 hour cell extracts were performed on an Agilent (Wilmington, DE) LC system, equipped with a binary pump, an auto-sampler, a diode array detector (Agilent 1100 series) and a fraction collector (Agilent 1200 series) controlled by Agilent ChemStation (Version B.02.01) Software. LC separations were performed on a C-18 Phenomenex (Torrance, CA) 3.5 µm, 4.6 x 150 mm, column. Separations were performed at a flow rate of 1 mL/minute with a linear gradient. The gradient was held for five minutes at 10% A (Water modified with 0.1 % Formic acid), then increased linearly to 90 % B (Acetonitrile modified with 0.1 % Formic acid) over 90 minutes. The gradient was then held at 90% B for 5 minutes then dropped down to 10% A. A fifteen minute post-time (At 10% B) was added to allow the column to equilibrate.

LC-MS and the nanoSplitter Interface

Details on the construction and design of the nanoSplitter can be found in previous publications [12, 13]. The nanoSplitter was used to split the flow from the LC column between the fraction collector and the MS system. 2% of the flow from the LC was directed to the MS system and 98% of the flow directed to the fraction collector. The flow directed to the nanoSplitter was then adjusted with a restriction valve so that 200 nL/minute was directed to the MS system and the rest to waste.

MS detection was performed on a Finnigan LCQ Classic quadrupole ion trap, (San Jose, CA) operated in positive ion mode. Full scan spectra in the mass range between m/z 100-1000 were acquired. The source voltage was held at 2 kV and, due to the low flow rates, no sheath or drying gas was required. Xcalibur software (version 1.3) was used to control the instrument and for data processing.

The instrument was tuned with sanguinarine and calibrated weekly with a mixture of Ultramark, MRFA and Caffeine (Thermo Scientific, San Jose, CA) according to the vendor’s specifications.

Fraction collection

The 96 hour extract was chosen for offline high resolution MS and NMR analysis. The LC eluent was split with a restriction valve and 98% of the flow was directed to the fraction collector via the diode array detector (the delay volume between the UV and the fraction collector was 71 µL). The fraction collector was operated in a time-dependent mode at five fractions per minute. The fractions were collected in low retention 96-well PCR plates (Nunc, Rochester, NY) with 200 µl deposited in each well. Wells containing the same peak of interest were pooled together.
into eppendorf tubes for high resolution MS and NMR analysis. To reduce contamination from plasticizer phthalates, the PCR plates and eppendorf tubes were soaked for an hour in a tub filled with 100% methanol before use.

High Resolution MS

For high resolution mass spectrometry, 10 µg of the 96-hour extract was injected on the LC column and fractions of the peaks of interest collected as described above. Wells containing the same peak of interest were pooled, and then infused directly without drying into an LTQ-Orbitrap XP (Thermo Fischer, San Jose, CA) at a flow rate of 10 µl/minute. The mass spectrometer was operated in the positive ion mode with the source voltage and heated capillary temperature set to 4.5 kV and 275 °C respectively. Nitrogen was used as a sheath gas.

Full MS and MS/MS spectra of the mass range between m/z 100-500 were acquired for each chromatographic peak (1-8), at 60k resolution, with 3 microscans. MS/MS analysis, collision induced dissociation (CID) of the most abundant ion with was performed in the LTQ, and the fragments ions measured in the Orbitrap with an isolation window of 1 m/z. Fragmentation was activated for 0.25 ms, normalized collision energy of between 30 and 40% was used for each analyte. Xcalibur software (Version 2.1) was used to control the instrument and for data analysis. The fragmentation method was optimized using direct infusion of a solution of sanguinarine standard at a flow rate of 10 µl/minute.

Mass calibration was performed according to the method provided by the instrument vendor. The mass accuracy of all fractions of interest was below 3 ppm.
NMR analysis

NMR analysis was performed on an Inverse Carbon Gradient (ICG) probe (MRM/Protasis, Savoy, IL). This probe has an observe volume of 2.5 µL. The probe was internally coated with fluoro-octosilane for use with microdroplet NMR as previously described [24].

All NMR spectra were acquired on a Varian (Palo Alto, CA) Inova spectrometer with an 11.7-T (500 MHz) actively shielded magnet; the data were processed and analyzed with VNMR version 6.1C software. 1K to 16K scans were acquired for each fraction depending on the concentration of each sample. Spectra were acquired with a 60 degree tip angle, 1.98 s acquisition times, and when necessary, pre-saturation of the residual water peak using a saturation delay of 1.5s was performed. All spectra were collected at a fixed gain of 60 (maximum gain). The spectral width was set to 8 KHz. Each FID was zero-filled to 64K points, multiplied with an exponential function (1Hz line broadening), phased manually, and, baseline corrected. Chemical shifts were referenced to deuterated 4, 4, dimethyl-4-silapentane-1-sulfonic acid (DSS-d6).

Before NMR analysis, the LC solvent of the pooled fractions was dried under vacuum and the fractions re-suspended in 5 µl deuterated DMSO. The samples were loaded into the probe as immiscible droplets of water in oil as follows: a 25 µl Hamilton syringe fitted with 10 cm Teflon tubing (200 µm I.D) with a 4 cm 200 µm capillary stub was filled with the immiscible carrier fluid FC-43 to the 15 µl mark, 3µl of the sample was then drawn into the syringe, followed by 2 µl of FC-43 and finally deuterated DMSO as a wash plug. The sample was pumped into the probe with a syringe pump flowing at 2.5 µL/minute. The centering of the sample in the probe’s active volume was determined by the maximum lock.
Compounds 2 and 3, which showed the presence of more than one co-eluting compound in NMR, were recovered after NMR analysis to ensure they had not degraded during analysis. Each compound was recovered by back-flushing the microcoil probe with 25 µL of FC-43 (total probe dead volume is 17µL). Each recovered fraction contained a layer of immiscible fluorocarbon (bottom layer) and sample. The sample layer (top layer) was pipetted out and dried down under vacuum. Each recovered fraction was then re-suspended in starting mobile phase (10% acetonitrile/90% water) then re-injected into the LC-MS system and analyzed using the same method that was used for separation of the cell extracts.

2.4 Results and Discussion

An overview of the experimental design used in this work is illustrated in Figure 2.3. An extraction and LC method was developed for the E. californica cell cultures, and several growth conditions were examined (time-points after elicitation), prior to requesting the expense and expertise of structural assignment of the chromatogram. A sample was selected with the best representation of peaks of interest at sufficient level for identification, and analyzed with the nanoSplitter LC-MS using a unit resolution MS (ion-trap), while collecting time-based fractions. After review of the LC-MS data, fractions were pooled to recover single-compound peaks. Each fraction was infused into a high resolution MS (LTQ- Orbitrap XP) to determine the exact mass and to obtain tandem MS fragmentation (MS/MS). Fractions for NMR were concentrated by drying off the LC solvent, re-suspended in deuterated dimethyl sulfoxide (DMSO-d₆) then loaded into the microcoil NMR probe using droplet microfluidics. The MS and NMR data from the micro-analytical platform were then interpreted with reference to analysis of one standard, sanguinarine (SA). The results were confirmed by comparison with the previously published
(large-scale) studies of *E. californica* [33]. The benzophenanthidine alkaloid (BPA) chelerythrine was also used as a reference for confirmatory purposes of one of the isolated compounds. Eight compounds were isolated, down to the 200 ng level, using the nanoSplitter LC-MS / Microdroplet NMR platform from analytical scale LC separation loading of 50 µg of extract.
Figure 2.3 The work-flow used in identification of secondary metabolites in cell cultures. After extraction of the metabolites, an LC method is developed that resolves the complexity of the mixture. Different cell culture conditions are surveyed by LC-UV.
2.4.1 LC-UV Profiling of Elicited Cell Cultures

Figure 2.4 shows a time-course of alkaloid production after elicitation, monitored by LC-UV. An overall pattern of five early eluting peaks (1-5) and three late eluting peaks (6-8) is evident. This pattern reflects the two forms of BPAs: the more polar quaternary benzophenanthridine alkaloids (QBPAs), represented by peaks 1-5, and the non-polar dihydrobenzophenanthridine alkaloids (DHBPAs), peaks 6-8 which elute late under reversed phase LC conditions[26]. The total amount of all the BPAs combined, accumulated roughly linearly from 7 mg/g dry weight (DW) at 24 hours after elicitation, to 20 mg/g DW at 72 hours as illustrated in Figure 2.4b. The compounds in peaks 6-8 were observed 24 hours after elicitation and their accumulation remained relatively constant between 24 and 96 hours after elicitation, while the accumulation of the compounds in peaks 1-5 increased with time, with the compounds in peaks 2 and 5 not accumulating to a detectable level until 72 and 48 hours respectively. Longer harvest times are therefore preferred for accumulation of peaks 1-5. Compounds corresponding to Peaks 6-8 can be harvested at any time point. In order to identify the compounds produced from a single chromatogram after elicitation, the 96 hour extract was selected for LC-UV-MS and NMR analysis because it presented the most balanced presence of the all the peaks in the mixture.
Figure 2.4 Accumulation of benzophenanthridine alkaloids (BPA) with time: (A) LC-UV (283 nm) chromatograms showing a time course of detected metabolites. The 96 hour extract is further analyzed by LC-MS and NMR (B) The bar graph represents the total accumulation of indicated peaks in (A) over time (done in triplicate). The total BPAs accumulate roughly linearly with time from 24 to 96 hours after elicitation.
2.4.2 Identification of LC Peaks

After initial LC-UV analysis had established that the 96-hour extract presented the most balanced profile of all of the compounds in the elicited cell culture, this time-point was selected for more detailed characterization of the individual compounds by LC-MS-microcoil NMR. Given the high mass-sensitivity of the microcoil NMR (ca. 200 ng as compared to ca. 10 µg for conventional 5 mm NMR probes) isolation of compounds of interest could be conducted on the 4.6 mm columns as opposed to semi-preparative columns [22, 23]. To prevent column overload that led to peak-to-peak contamination from peak broadening, the total amount of extract loaded on the LC column for any given injection was kept under a maximum of 50 µg. In addition, three repeat injections were pooled to increase the amount of material collected for NMR analysis of the smaller peaks (Note that tripling the amount of material for NMR reduces the time requirement for NMR acquisition by nearly 10-fold). Repeating an LC collection only required an additional two hours per run and could be done overnight under LC automation, which took considerably less time when compared to NMR analysis time. Fractions that contained the same chromatographic peak from the different LC runs were then pooled manually for microcoil NMR analysis. The mass of each peak collected was estimated by UV, to aid in allocation of the NMR acquisition time to obtain an acceptable (>10) signal-to-noise ratio. For example, the NMR spectrum for Peak 4 (8 µg) was acquired in an hour, while the spectrum of Peak 2 (200 ng) required an overnight acquisition.

The LC-UV-MS chromatograms and 1H NMR spectra of the 96-hour extract are shown in Figure 2.5. All the peaks detected by UV were also observed in the MS chromatogram, although Peak 6 gave a strong signal in UV but a small peak in MS, presumably due to low ionization
efficiency. The correlation of the UV and MS signals was important because the pooling of fractions for offline analysis (exact mass and NMR) was based on the MS response while fraction collection was correlated to the UV. At unit mass resolution, some peaks exhibited the same nominal mass e.g. Compounds 2 and 3 (Table 2.1). All the LC peaks above a 0.1% threshold in the UV chromatograms were targeted for offline high resolution MS and NMR analysis. High resolution MS was used to determine elemental composition and for MS/MS analysis as a first step towards structural assignment of the BPAs. MS/MS showed various similar neutral losses from the components of the chromatogram, an indication that the isolated compounds were related. Exact mass MS/MS results also established the elemental composition of the fragment ions, pin-pointing the chemical moiety present in the BPAs as summarized in Table 1. The BPAs have the same core structure and differ only in functional group and substitution patterns around the four fused rings. NMR was used to determine the site of modification and to confirm MS results; spectral differences were mainly in the aromatic region patterns (Figure 2.5B)
Figure 2.5 LC-UV-MS-NMR of the 96 hour time-point *E. Californica* extract: (Top) UV (283nm) and MS chromatograms correlate to within 0.1 minutes (MS chromatogram is shifted to the right for clarity). The LC peaks labeled 1-8 were fractionated for offline high resolution MS, MS/MS and, microcoil NMR analysis. (Bottom) Microcoil 1H NMR spectra of the aromatic region (6.5 to 9 ppm) of the LC-UV Peaks 1-8. The mass of collected analytes varied from 200 ng (2) to 8 ug (4).
MS and NMR Features of Sanguinarine (SA)

When establishing a cell culture expression system, there is usually at least one well-characterized compound of interest. The MS and NMR data (Figure 2.6) of the standard sanguinarine (SA) were used as a reference to assist in the interpretation of the MS and NMR data of the LC-UV peaks in the 96 hour cell extract. Because the ESI mass spectrum was obtained from an acidic solution which put SA into the positively charged quaternary nitrogen form, its peak of highest mass corresponded to the actual molecular mass, M+, and occurred at an even mass, m/z 332, even though SA contains a single nitrogen atom. The MS/MS spectrum of SA exhibited fragment ions at m/z 317 [M – CH₃]+, m/z 304 [M – CO] + and at m/z 274 [M - (CH₂O + CO)] +. Although the acidic form of SA was observed under positive electrospray conditions, in the ¹H NMR analysis of the LC-fractionated SA, the neutral form (pseudo-base) was observed (Figure 2.6C). This is in accord with the previously published results showing that QBPAs like SA exist in two forms, which are dependent on the pH of the solution [37] (Figure 2.6B). The aromatic region of the ¹H spectrum of SA-pseudo-base (Figure 2.6C) exhibited six protons, two as singlets and four as ortho-coupled doublets (J=8.8 Hz). In addition, the ¹H spectrum exhibited a methyl singlet at 2.8 ppm from the N-CH₃ group and resonances between 6.1 and 6.15 ppm from the methylenedioxy groups at C-2 and C-7. In the subsequent evaluation of the NMR spectra of Peaks 1-8 discussed below, the NMR resonances of the basic form of SA are used as a reference.
Figure 2.6 (A) MS/MS spectrum of Sanguinarine (SA). (B) The conversion of quaternary benzophenanthridine alkaloids to the pseudo-base from the acidic form (left) in LC-MS to the pseudo-base neutral form (right) in neutral solution. (C) ¹H NMR spectrum (δ 5-9 (left), δ 2.0-3.0 (right)) of sangunarine pseudo-base, with NMR peak assignments.
<table>
<thead>
<tr>
<th>Peak</th>
<th>Observed Nominal Mass</th>
<th>Observed Exact Mass</th>
<th>Major Fragment Ions</th>
<th>Calculated Exact Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>332</td>
<td>332.0909 [M]+</td>
<td>317.0680, 304.0964, 274.0861</td>
<td>332.0912 Sanguinarine</td>
</tr>
<tr>
<td>2</td>
<td>348</td>
<td>348.0858 [M]+</td>
<td>333.0626, 320.0910, 290.0808</td>
<td>348.0861 10-hydrosanguinarine<sup>a</sup></td>
</tr>
<tr>
<td>3</td>
<td>348</td>
<td>348.1216 [M]+</td>
<td>333.0982, 315.0890, 304.0960</td>
<td>348.1225 Chelerythrine<sup>b</sup></td>
</tr>
<tr>
<td>6</td>
<td>350</td>
<td>350.1374 [M+H]+</td>
<td>335.1140, 319.1193</td>
<td>350.1387 Dihydrochelerythine</td>
</tr>
<tr>
<td>7</td>
<td>364</td>
<td>364.1165 [M+H]+</td>
<td>349.0920, 333.0987</td>
<td>364.1179 Dihydrochelirubine</td>
</tr>
<tr>
<td>8</td>
<td>334</td>
<td>334.1060 [M+H]+</td>
<td>319.0826, 304.0960, 276.1013</td>
<td>334.1074 Dihydrosanguinarine</td>
</tr>
</tbody>
</table>

Table 2.1 The nominal mass, exact mass and major fragments ions of compounds 1-8. The exact mass error was below 5 ppm for all the peaks.

^{a,b} Compounds 2 and 3 were tentatively identified as 10-hydrosanguinarine and chelerythrine based on their MS and MS/MS results.
The first LC peak, 1 (m/z 332, [M]⁺) was assigned as SA on the basis of the comparison of its MS and ¹H NMR spectra with a reference sample of SA. In addition under the same chromatographic conditions, its retention time was the same as that of SA. Furthermore, co-injection with sanguinarine yielded a single peak.

The second and the third LC peaks, 2 and 3 exhibited the same nominal masses, (m/z 348, [M]⁺) but different exact mass (elemental composition) and MS/MS spectra. The MS/MS spectrum of compound 2, (results summarized on Table 2.1) exhibited neutral losses similar to SA with fragment ions at m/z 333 [M - CH₃]⁺, m/z 320 [M - CO]⁺, and m/z 290 [M - (CH₂O + CO)]⁺, an indication that the two compounds were structurally related. Its exact mass suggested that a hydroxyl group had been added to SA. The MS/MS spectrum of peak 3 (Figure 2.7A) on the other hand, exhibited fragment ions at m/z 333 [M - CH₃]⁺, m/z 318 [M - 2CH₃], 315 [M-(2CH₃ + 2H)]⁺, m/z 304 [M - (CO + CH₃ + H)⁺].
Figure 2.7 (A) The MS/MS spectrum of Fraction 3. (B) The comparison of the 1H NMR spectrum of fraction 3 and chelerythrine (CHE) shows that fraction 3 in addition to CHE, contains a co-eluting compound.
To identify the differences and similarities of 2 and 3 to SA, their 1H spectra were acquired. However, although the two compounds exhibited individual peaks in LC, their 1H NMR spectra suggested that the chromatographically isolated peaks contained more than one co-eluting species. To ensure that the extra signals observed in 1H NMR were due to co-eluting species and not from degradation, after 1H NMR acquisition each of the two compounds was recovered and re-injected into the LC-MS system, and each eluted as a single peak at the retention time observed during fractionation. The two compounds were therefore tentatively identified by their MS and MS/MS results and in the case of compound 3 by comparison with the BPA chelerythrine (CHE) which is commercially available (Figure 2.7B). Co-injection of 3 with CHE yielded a single peak and the MS and MS/MS spectra of 3 and CHE were identical. Compound 2 was tentatively identified as 10-hydrosanguinarine based on its exact mass and MS/MS spectra.

The molecular mass of the fourth LC peak, 4 (m/z 362, [M]$^+$) was 30 mass units above that of SA, consistent with the addition of a methoxy group to SA, as also confirmed by exact mass measurements. The MS/MS spectrum of 4 exhibited similar neutral losses as sanguinarine, of [M - CH$_3$]$^+$ and [M - CO]$^+$, an indication of some structural similarity to SA. The presence of the methoxy group was supported by the presence of a three-proton singlet at ~ 3.9 ppm in its 1H spectrum. To determine the site of the methoxy substitution the 1H NMR spectra of 4 and SA were compared. The presence of five protons (two ortho-coupled doublets and three singlets) is evident in the aromatic region of the 1H NMR spectrum of 4. This compares with six protons in SA, seen as four ortho-coupled doublets and two singlets. Specifically, in SA, H-9 is an ortho-coupled doublet but is found as a singlet in 4, and is shifted upfield to 6.98 ppm from 7.02 ppm in SA. In addition, H-11, which is the most de-shielded proton in SA is shifted downfield to 8.34
ppm in 4 from 7.83 ppm in SA, and this can be attributed to the through-space interactions of that proton with the methoxy group. Compound 4 can thus be identified as chelirubine. Our assignment of compound 4 as chelirubine is in agreement with previously published results [37].

The mass spectrum of LC peak 5, with a molecular mass (m/z 392, [M]+) which is 60 mass units above that of SA, suggested the addition of two methoxy groups to SA. The MS/MS spectrum of 5 also exhibited the same neutral losses (Table 2.1) as SA and analytes 2 and 4, an indication that they shared common functional groups. The addition of the two methoxy groups to 5 was confirmed by its 1H spectrum which showed methoxy singlets at 3.7 and 3.9 ppm. The aromatic region of the 1H NMR spectrum of 5 exhibited four one-proton singlets; the two singlets at 7.4 ppm (H-1) and 7.6 ppm (H-4) which were also observed in SA; H-9 and H-11 were singlets in 5, but were doublets in SA, an indication that C-10 and C-12 were the sites of substitution. This conclusion is further supported by the absence of the doublets from H-10 and H-12 seen in SA. The pattern of resonances in the aromatic region of compound 5, matches previously published 1H results of marcapine thus 5 is assigned as Marcapine [33].

Characterization of late eluting LC Peaks 6-8

In comparing the MS, MS/MS and 1H NMR features of the early eluting compounds, 1-5, and the late eluting cluster, 6-8, several distinct features as well as similarities became apparent. Some key differences between peaks in the two clusters of compounds is observed in their respective 1H NMR spectra as illustrated in Figure 2.8, which shows an expansion from the 1H NMR spectra of compounds 4 and 7. Although the aromatic regions of the NMR spectra are similar, a methine proton signal is observed at ~5.3 ppm (H-6) in the spectrum of 4. This signal
is shifted upfield to \(~4.05\) ppm and integrates to two protons, reflecting the presence of a methylene group. A similar shift of H-6 is observed in all the other late-eluting peaks. This structural change is also reflected in the mass spectral results. While both sets of compounds exhibited similar neutral loss fragments in their MS/MS spectra, the MS peak representative of the molecular mass of each compound differed in that while the highest mass ion in the spectra of 1-5 corresponded to \([M]^+\), the ESI spectra of the late eluting peaks produced the protonated adduct \(([M + H]^+)\). As discussed earlier for SA, this is because the early eluting peaks (QBPAs) are already charged in solution while the late eluting peaks (DHBPs) elute in their neutral form. These general features were observed in the analysis of 6 - 8 and along with data from the reference sample of SA were used in their structural characterization as discussed below.
Figure 2.8: 1H NMR spectra (δ 3.8-6.6) of compounds 4 (top) and 7 (bottom) representative of the common difference between the early eluting compounds (1-5) and the late eluting compounds (6-8). The singlet (C-6, one proton) at δ 5.3 in 4, is shifted upfied to δ 4.1 (C-6, two protons) in 7. The early-eluting compounds are the quartenary benzophenanthridine alkaloids which are converted to their dihydro derivatives (6-8) by the enzyme dihydrobenzophenanthridine alkaloid oxidase. Compound 7 is the dihydro derivative of compound 4. The neutral (pseudo-base) form of 4 shown in the figure is the form in deuterated DMSO for NMR.

The NMR spectrum of the sixth LC peak 6, (m/z 350, [M+H]$^+$), exhibited a number of similarities to that of sanguinarine in its aromatic region where it shared the same six protons, four as ortho-coupled doublets ($J \sim$8 Hz) and two as singlets, but differed by the additional
presence of two methoxy singlets at ~3.7 ppm and at ~3.9 ppm. In addition, unlike SA which had two methylenedioxy groups, compound 6 had one methylenedioxy group as shown by the singlet at ~6.1 ppm. Accordingly, 6 was assigned the structure of dihydrochelerythrine. This assignment was further supported by the reduction of the commercially available standard chelerythrine with NaBH₄ to its dihydro derivative [33], and when the dihydro derivative was analyzed by MS and NMR, its MS and NMR results matched those of 6. Also, LC co-injection of isolated 6 and dihydrochelerythrine yielded a single peak.

As discussed above, the ¹H NMR spectra of compounds 7 (m/z 364, [M+H]+) and 4, both exhibited five protons in the aromatic region, two ortho-coupled doublets and three singlets. 7 also exhibited a methoxy singlet at ~3.9 ppm. The main difference in their ¹H spectra was in the two proton singlet at ~4.1 ppm in 7, which appeared as a one proton singlet in 4, indicating that 7 had two protons at C-6 unlike 4 which had one proton. Peak 7 was therefore assigned as the structure of dihydrochelirubine, the dihydro derivative of 4. This was further confirmed by the NaBH₄ reduction of 4 to its dihydro derivative and comparison the ¹H NMR results with those of 7.

Finally, the ¹H NMR spectrum of the eighth LC peak, 8 (m/z 334, [M+H]+) exhibited the same pattern of resonances in its aromatic region as SA, with six protons in its aromatic region, two as singlets and four as ortho-coupled doublets. Its ¹H spectrum differed from that of SA, in that the methine resonance at 5.5 ppm in SA was shifted upfield to 4.1 ppm and was indicative of a two-proton singlet. Compound 8 was therefore identified as dihydrosanguinarine and the assignment is further supported by the NaBH₄ reduction of sanguinarine to its dihydro derivative. The MS and the ¹H NMR spectra of the reduced SA derivative, matched the results from compound 8.
In summary, the complementary use of MS and NMR identified six of the eight compounds in the 96 hour extract, and exact mass measurements aided in differentiating compounds of the same nominal mass (Compounds 2 and 3). Crucial for the complete structural characterization of the compounds in the cell culture was the availability of a reference compound in this case sanguinarine, which contained the core structure of most of the likely products. The MS/MS data brought out the similarities of the profiled compounds as they all originate from dihydrosanguinarine, with the exception of chelerythrine and dihydrochelerythrine which are derived directly from S-scoulerine, (Figure 2.9). The ^1H NMR spectrum of sanguinarine provided a reference for identification of the exact site(s) of modification of the core structure in most of the isolated metabolites, thus removing the requirement for more time consuming 2D-NMR experiments. In principle, after their full characterization, the isolated compounds can be used as standards in other studies either for method development or in analysis of cell cultures producing related compounds. The results from our microanalytical platform are consistent with data obtained from previous studies carried out at the preparative scale using 400-fold larger amounts of sample [33].

As shown in Figure 2.9 *E. californica* cell cultures produce twelve compounds compared to our detection of eight in the cell cultures employed in the present work. It is conceivable that the remaining four could either be at low levels, below the detection limit of our analytical platform or these compounds do not accumulate under the specific conditions employed in our cell cultures. Additionally, the ^1H NMR spectra of 2 and 3 showed the presence of more than one co-eluting compounds. It is possible to improve the selectivity of our LC method to resolve the other compounds in the two peaks either by changing the mobile phase or by changing the
column chemistry. It should be noted however that changing selectivity in LC might change the elution order and selectivity of the other peaks detected by our method.
Figure 2.9 The benzophenanthridine alkaloids pathway that is activated when *E. Californica* cell cultures are elicited. The compounds labeled 1-8 (names on the table) were detected in the work presented. Compound 9-12 were not detected in our cell culture experiments. Adapted from [26].
The data presented above demonstrates the applicability of a novel integrated LC-UV-MS-microNMR platform for the identification of compounds from a plant cell culture at the analytical scale. The platform has a large dynamic range as demonstrated in the analysis of the *E. Californica* cell cultures, where structure characterization was carried out in elicited cell cultures containing metabolites ranging from as little as 200 ng to as high as 8 µg. With these identifications, LC-UV serves as a rapid method for profiling metabolites produced in cell cultures under different elicitation and growth conditions. For final structure characterization, this analytical approach allows for the use of each detector at its optimal sensitivity by having NMR offline from MS, so each method is applied independently without compromising its performance. Having LC-MS offline from NMR also separates the expertise required into the established fields of LC-MS and NMR, obviating the requirement for an expert team on hyphenated LC-MS-NMR. The simultaneous use of MS and UV as a guide for detection and collection of peaks of interest for offline NMR analysis is advantageous because it can be extended to the analysis of LC peaks that can be monitored by either detector regardless of whether they contain a UV chromophore or not. The non-destructive nature of NMR is valuable in that compounds of interest can be recovered for re-injection as demonstrated with compounds 2 and 3 or for further analysis on other analytical platforms.

2.5 Conclusion

While the focus of the work presented was in demonstrating the utility of the LC-UV-MS-offline microNMR analytical platform in the identification of the compounds in the *E. californica* cell culture, it should be noted that its general applicability extends to a broader spectrum of
preliminary screening and optimization of bioengineered cultures and, indeed, to identification of natural products or drug metabolites in general. We have illustrated LC-MS+NMR using our platform of concentrating collected fractions by drying for later analysis by microcoil NMR, but these same advantages can be gained with other forms of fraction collection, such as SPE cartridges [38], followed by offline NMR analysis using any of a variety of highly sensitive NMR probes available, such as micro-cryoprobes with 1 mm or 1.7 mm tubes [39].

2.6 References

Chapter 3:

Identification of Metabolites Affected by Diet using Electrochemical Detection, Mass Spectrometry, and Microcoil NMR
3.1 Introduction

Metabolomics is a comprehensive study of all metabolites (low molecular weight compounds) in a biological system. A typical metabolomics study has two major goals: to identify differences in metabolite concentration between two states or metabolite profiling. These differences can subsequently be used as indicators for a particular state [1-4]. The second goal is to structurally characterize the biomarkers identified in the profiling experiments. Structural characterization of metabolite is essential because it helps in pin-pointing the exact metabolic pathways affected, by, (e.g. disease) which would be important in designing therapeutics and would also aid in understanding disease biochemistry [3].

Dietary choices are known to have an effect on the development of certain diseases. For example, a diet rich in fats, red meats etc., has been associated with occurrence of diseases including cancer and heart disease [5, 6]. On the other hand, diets rich in vegetables or of low caloric composition are known to protect against disease and to even retard aging [7-9]. Because diet is known to alter metabolism, metabolomics studies involving different diets can be used to provide an insight into the biochemical alterations that occur due to changes in dietary intake and the relationship of diet to disease development [8-10].

Metabolomics studies and most especially metabolite identification is complicated by the diversity of the metabolome, in both chemical properties and in concentration. Unlike other ‘omics’ studies like genomics or proteomics which profile compounds made from the same building blocks (e.g. four nucleotide bases in genomics and the twenty amino acids for proteomics) metabolites are products from all cellular processes creating a great chemical diversity, and therefore requires multiple analytical platforms for their detection and
identification [11, 12]. Also, the concentration of different metabolites encompasses a wide range, from picomolar to millimolar quantities which therefore require analytical platforms that are both highly sensitive and have a large dynamic range to ensure thorough characterization of the sample. Analysis is also limited by the complexity of biofluids (e.g. plasma, serum) used for metabolomics studies. For de novo identification of metabolites, extensive sample preparation to reduce a sample’s complexity combined with structurally informative analytical platforms is required [13].

Mass spectrometry (MS) based methods (GC-MS and LC-MS) and NMR are the two main analytical techniques used in metabolite identification [14]. GC-MS is a well-established analytical technique and is particularly useful for structural characterization of volatile and semi-volatile compounds. GC-MS normally utilizes electron impact (EI) which yields predictable and reproducible mass spectral fragmentation patterns. The predictability and reproducibility of EI mass spectra allows libraries of reference spectra to be consulted to aid in structural assignment and confirmation [15, 16]. GC-MS however, is limited to the analysis of volatile and semi-volatile compounds which require derivatization before analysis. Derivatization can complicate analysis if analytes are only partially derivatized which can lead to observation of multiple peaks for the same analyte [17]. Another limitation in the use of GC-MS is that EI is a hard ionization method, and the molecular ion may not always be detected, thus it is may be difficult to assign structures especially for unknowns [15, 16, 18]

In recent years, LC-MS has become perhaps the most widely used technique for metabolomics profiling and identification. This is because LC-MS is capable of analyzing a wide range of chemically diverse compounds with high sensitivity, and the LC method can be tailored for
separation of different types of compounds (e.g., HILIC separation for hydrophilic compounds and reversed-phase for hydrophobic compounds) [19]. Metabolite identification by LC-MS is based on spectra obtained by tandem mass spectrometry (MS/MS) which are then compared to authentic standards [20-22]. These mass spectral patterns can also be searched against databases, although LC-MS databases are not as comprehensive or as consistent as GC-MS libraries, because ESI fragmentation patterns vary depending on the collision energy used and from instrument-to-instrument [23-27]. Further, although MS-based platforms are sensitive, they are affected by matrix effects, and are limited to compounds with good ionization efficiencies [28, 29]. Moreover, MS cannot always distinguish between stereo isomers, which might be necessary in a metabolomics experiment [30].

NMR provides complementary and more definitive structural information than MS and it can distinguish stereoisomers [31]. In addition, NMR is a non-destructive technique which allows for recovery of samples for further analysis. However as in the case for MS, NMR also requires relatively pure samples [32]. Therefore when analyzing complex samples, a separation step is necessary to reduce signal overlap [32]. NMR also suffers from relatively poor detection limits, rendering it less applicable to routine metabolite identification [33]. However, in recent years, several new instrumental and experimental techniques have emerged to enhance NMR sensitivity these include the development of highly sensitive NMR probes and alternative processing techniques discussed in the first two chapters of this thesis [34].

3.2 Project Goal

In this work, we have combined the strengths of mass spectrometry and NMR to structurally characterize metabolites from human plasma. These metabolites are identified from LC fractions
that contain metabolites that were previously identified in a comparison of the metabolome under calorie restriction with normal diet [8]. The reduction of the amount of calories consumed has been shown to slow down the rate of aging and with it, the development of diseases associated with aging (e.g. cardiovascular disease, diabetes, cancer) [35, 36]. The identification of the metabolites affected by dietary restriction would aid in identifying the relationship between caloric restriction and disease risk.

Profiling experiments to find metabolites affected by caloric restrictions have been done using electrochemical detection (LC-EC). LC-EC is highly sensitive when compared to LC-MS and NMR [36, 37]. It can detect hundreds of metabolites down to the picomolar level, recognizing them according to their hydophobicities (LC retention time) and oxidation potential (Figure 3.1) [38, 39]. An array of EC cells with different potentials are connected in tandem, which can distinguish co-eluting species, based on their distinct oxidation potentials [38, 39]. The high sensitivity and specificity of LC-EC makes it ideal for profiling. However, LC-EC is limited to compounds that are electroactive, and it provides little to no structural information of the detected metabolites [38]. Thus structural characterization of analytes requires follow-up analysis with structurally-rich detectors like MS and NMR.

In this work, LC-EC was repeated in combination with both LC-MS and microcoil NMR for structural characterization metabolites from human plasma. All detectors - LC-EC, LC-MS and NMR - were run independently to ensure that each detector could be used at its optimal conditions. Prior to MS and NMR analysis, the metabolite extract was first fractionated using HPLC. The HPLC fractionation was to simplify the sample’s complexity to reduce the possibility of ion suppression in MS and signal overlap in NMR.
Figure 3.1: LC-EC detection separates analytes in two dimensions; hydrophobicity (LC) and oxidation potential (EC). The EC detector is comprised of porous electrodes (upto 16) all operating at different electrical potentials. Reprinted from [4].

For LC-MS, a high resolution (Orbitrap) mass spectrometer was used, high resolution MS reduces the number of possible candidates. The exact mass was then searched against the metabolomics databases, METLIN [24] and HMDB [23] which combined have over fifty-thousand mass spectra of both endogenous and exogenous metabolites. The mass spectrometer was operated in both positive and negative ion mode with all ion fragmentation using high collision dissociation (HCD) in each mode. This multimode detection increased metabolite coverage which ensured that metabolites that ionized in either mode were detected [40]. The MS/MS was used to provide structural information of the analytes of interest. For volatile and semi-volatile metabolites, GC-MS was also used for structural confirmation.
For NMR, a solenoidal microcoil probe which has high mass sensitivity when compared to conventional NMR probes was used [41]. The microcoil probe showed limits of detection of 2 nanomoles for 1H NMR spectra. NMR results were used in combination with mass spectrometry data to produce tentative identifications. Structural confirmation was based on comparison of analytical results with those of authentic standards.

3.3 Materials and Methods

The work presented was done in collaboration with Professor Bruce S. Kristal at Brigham and Women’s Hospital (BWH), his post-doctoral associate, Dr. Susan S. Bird and his research associate Diane P. Sheldon. The LC-EC, LC-MS and fractionation experiments were done at BWH while the NMR experiments were performed at Northeastern University.

Chemicals

LC-MS grade acetonitrile, methanol, isopropyl alcohol (IPA) and water were obtained from Fisher Scientific (Pittsburgh, PA). Triethylamine, ammonium acetate and acetic acid were purchased from Fisher Scientific (Pittsburgh, PA). All deuterated solvents were purchased from Cambridge Isotopes (Andover, MA). All standards were purchased from Sigma-Aldrich (St. Louis, MO)

Metabolite Extraction for Identification

For each injection, proteins from two 1.25 ml plasma pools were first precipitated with 5 ml cold (-20°C) acetonitrile/0.4% glacial acetic acid. The samples were then centrifuged for 15 minutes at 4°C, at 12,000 rpm. The supernatant was then transferred into microcentrifuge tubes (1 ml per tube to a total of ten tubes), then dried under vacuum in a cold centrivap. The dried extract in
each tube was then reconstituted in 20 µl mobile phase A (water modified with 25 mM ammonium acetate adjusted to pH 3.1 with acetic acid), vortexed thoroughly, then pooled together for HPLC fractionation to a final volume of 200 µL.

LC-EC profiling method

The LC-EC method in which the metabolites of interest were identified was as follows: Separation was performed by gradient elution on two reversed-phase ESA (Chelmsford, MA) (4.6 x 250 mm, 5µm) columns connected in tandem with PEEK tubing. The column temperature was held at 32 °C. The gradient conditions were as follows: The gradient was held at 0% B for one minute, increased to 12% B over 30 minutes, followed by an increase to 35% B over 5 minutes, then to 48 % B over 20 minutes and finally to 100% B over 35 minutes. The gradient was then held at 100% B for 10 minutes before being dropped to down 0% B. The mobile phases used for profiling were water modified with 70 mM pentane sulfonic acid adjusted to pH 3.1 with acetic acid (mobile phase A) and 80:10:10 methanol: acetonitrile: isopropanol alcohol modified with 100 mM lithium acetate modified with 0.1% acetic acid. The flow rate in the system was set to 1 mL/minute.

HPLC Fractionation for Metabolite Identification

Because LC-MS and LC-EC have different experimental requirements, with LC-EC using mobile phases that compromise MS performance (pentane sulfonic acid is not volatile). For fractionation before LC-MS and NMR experiments the profiling method was modified to use MS friendly solvents (pentane sulfonic acid was substituted with triethylamine and lithium
acetate was substituted with ammonium acetate). All other separation parameters were kept the same as in the profiling method.

To reduce the sample’s complexity before LC-MS and NMR analysis, the metabolite extract was first fractionated by LC. Separation of the metabolite extract was performed on an Agilent 1200 series HPLC system consisting of a binary pump, an auto-sampler, a degasser, a variable wave detector and a fraction collector. The mobile phase consisted of 100% LC-MS grade water modified with 100 mM triethylamine and 25 mM ammonium acetate with acetic acid (Mobile phase A) and a mixture of 80% methanol, 10% acetonitrile and 10% isopropanol modified with 25 mM ammonium acetate and adjusted to pH 3.1 with acetic acid (mobile phase B). Time-dependent fractions were collected from 3 to 104 minutes for a total of 96 fractions, in a 96 well plate (Waters, Milford, MA). The fractions were named according to the well they were collected in. The variable wave detector was monitored at 280 nm. The fractions were then transferred to 1.5 ml microcentrifuge tubes. Before drying, 20 µl of dimethyl sulfoxide (DMSO) was added into each tube to ensure efficient sample recovery. The HPLC solvent was then dried under vacuum. Each fraction was then reconstituted in mobile phase A before injection into the LC-EC and LC-MS.

For NMR analysis, three separate extractions and LC fractionations each of 2.5 mL plasma were performed. From the three separate extractions (and injections), wells containing the same analyte were pooled together, dried down and re-suspended in 10 µl deuterated dimethyl sulfoxide (DMSO-d6) for NMR analysis.
LC-MS and LC-EC analysis

Because LC-MS and LC-EC have different experimental requirements, with LC-EC using mobile phases that compromise MS performance, the LC-EC method initially used in the profiling experiments was modified to use MS friendly solvents.

For LC-MS and LC-EC, separation was performed using two Shiseido C-18 columns (4.6 x 150 mm) connected in tandem using the same gradient as that used in the fractionation of the metabolites. The mobile phases used were as follows: Mobile phase A consisted of water modified with 25 mM ammonium acetate adjusted to pH 3.1 using acetic acid, while mobile phase B consisted of 100% methanol modified with ammonium acetate and adjusted to pH 3.1 using acetic acid. The flow rate was set to 500 µL/minute. 50 µL of the extract was injected into both the LC-MS and the LC-EC.

LC-MS Instrumentation

LC-MS was performed on a Thermo Scientific HPLC system which consisted of an autosampler and an Acela quaternary HPLC pump (Thermo-Fisher, San Jose, CA). The HPLC system was connected to an Exactive bench-top Orbitrap mass spectrometer (Thermo Fisher, San Jose, CA) equipped with a heated electrospray ionization (HESI) probe. The spray voltage was set to 4 kV. The heated capillary and HESI probe were both held at 400 °C. The sheath gas flow was set to 60 units and that of the auxiliary gas at 20 units. The instrument was operated in both positive and negative ion mode. The instrument was tuned and calibrated as specified by the vendor.

Spectra were acquired using four scan events, alternating between full scan and high collision dissociation (HCD) in both the positive and negative ion mode. The instrument was operated in
high resolution mode, corresponding to 50K resolution. HCD acquisitions were acquired at 60 eV. Full scan spectra were acquired at a mass range between \(m/z \) 50 and 1000. The instrument was controlled using Xcalibur software version 2.1. The same software was used to process the data.

For identification, the exact mass of the analytes of interest was searched against the METLIN[24] database and HMDB [23] with a mass tolerance of 10 ppm on both sites. Both sites allow the user to search masses in both the positive and negative ion mode, and multiple adduct possibilities are calculated based on the exact mass.

LC-EC Instrumentation

Chromatographic separation with electrochemical detection (LC-EC) was performed on an ESA (Thermo-Scientific, Chelmsford, MA) LC-EC system with 16-channel coulorometric array detector. LC separation conditions were the same as for LC-MS. For metabolite detection, the EC detector was operated with potentials incremented in 60 mV steps (0–900 mV). All HPLC-ECD system functions were controlled by CoulArray software (CEAS-5.12 software)

NMR Analysis

NMR spectra were acquired on a Bruker Avance II 700 spectrometer (Bremen, Germany) operating at 699.97 MHz (\(^1H \) frequency). The spectrometer was equipped with a triple resonance inverse gradient capillary NMR probe (MRM/Protasis, Savoy, IL). The probe has a 10 µl flow cell, and a 5µl observe volume.

Before NMR analysis, the LC solvent of the pooled fractions was dried under vacuum, and the fractions re-suspended in 10 µl DMSO-d6. 8µl of each sample was then loaded into the capillary probe using One-Minute-NMR (Version 2.18.43) automation (Protasis, Savoy, IL) controlling a
CTC-PAL autosampler (LEAP Technologies, Carrboro, NC) with DMSO-d6 as the push solvent. 40 µl of DMSO-d6 was used to center the sample to the probe’s active volume, using 40 µl/minute flow rate. The spectrometer was set to automatically start when the sample was centered in the probe.

Spectra were acquired with a 45 degree tip angle, 1.45 s acquisition time and a 1 second recycle delay. When necessary, the residual water peak was pre-saturated with the standard Bruker zgpr pulse sequence with two dummy scans. The receiver gain was set to 256 and the spectral width was set to 8 KHz. Depending on an analyte’s concentration, 1K-24K scans were acquired. The FIDs were processed by zero filling to 64K, baseline corrected, and Fourier transformed with a 1 Hz exponential line broadening. All chemical shifts were referenced to deuterated sodium 2,2, dimethyl-silapentane-1-sulfonate (DSS-d6). Topspin version 2.1 was used to process the data and to control the spectrometer. All samples were recovered after NMR analysis.

Re-fractionation of D05 for NMR analysis

LC-MS results indicated that fraction D05 contained multiple compounds. Thus prior to NMR analysis, the fraction was re-fractionated on an Agilent 1100 HPLC system consisting of a binary pump, an auto-sampler, a diode-array detector (DAD) monitored at 280 nm, and a fraction collector. The mobile phase composition and the columns used in the LC-MS and LC-EC experiments were maintained. However, because the sample was less complex than the human plasma extract, the LC gradient was shortened as follows: The gradient was held at 0% B for eight minutes, increased to 20% B over 12 minutes, followed by an increase to 45% B over 15 minutes, then to 95% B over 20 minutes. The gradient was then held at 95% B for five minutes and finally dropped to 0% B. The total run time was 80 minutes.
Time-based fractions were collected between 20 and 35 minutes. Each minute was time-sliced five times, with five fractions collected for each minute (200 µl per fractions). The fractions that contained the same analyte were pooled together before drying.

GC-MS analysis

Fractions D05, D06, D12 and E09, and their respective standards were subjected to GC-MS analysis. The recovered samples were dried under vacuum then derivatized with N,O-bis (trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane (Fisher-Scientific). The analytes were incubated at 70 °C for 1 hour. The derivatized analytes were then analyzed by GC/MS using a HP 6890 series GC coupled to a single quadrupole HP 5973 mass selective detector. Separation was on a HP-5MS GC capillary column (30 m × 0.25 mm × 0.25 µm, 5% phenyl siloxane) with helium as a carrier gas at a flow rate of 0.8 mL/min. 5µl of each sample was injected into the injector port in the split mode at a ratio of 1:10. The inlet temperature was set to 230 °C. A temperature gradient was used for separation as follows: the oven temperature was set at 130 °C and ramped at a rate of 10 °C/min to reach the final temperature of 300 °C. Full-scan electron impact spectra across the mass range of m/z 50-700 were acquired in each run and the final spectra were obtained after background subtraction. Background subtracted spectra were searched against the NIST database (NIST08.L)

3.4 Results and Discussion

The long term goal of the work presented is the structural characterization of metabolites previously identified using LC-EC as changing due to caloric restriction. The short term is to develop a robust analytical method to allow us to achieve our long-term goal. The analytical
strategy developed is shown on Figure 3.2. After metabolite extraction, the supernatant was first fractionated by LC-UV. The fractionation was done to reduce the sample’s complexity prior to MS and NMR analysis. Time-based fractions were collected at one minute intervals through the entire chromatographic run (1 ml per fraction) for a total of 96 fractions (for identification, the metabolites are referred to after the 96-well position they were collected into). Fractionation was followed by LC-MS, LC-EC and NMR analysis. Prior to LC-MS and LC-EC the metabolites were pre-concentrated 10-fold, by drying and reconstitution in 100 µl of mobile phase A. To compare the retention times of the metabolites between LC-MS and LC-EC, all pre-concentrated fractions were injected into the LC-MS and the LC-EC systems under the same chromatographic conditions.

NMR analysis was used as a follow up to LC-EC and LC-MS so, only fractions corresponding to the retention time of metabolites of interest (identified during LC-EC profiling) were analyzed by NMR. Due to the higher sample concentration requirements of NMR when compared to both LC-EC and LC-MS, for NMR, samples for NMR were obtained by pooling the collected fraction containing the same analyte from three separate fractionations. These samples were then dried down, re-suspended in 10 µl DMSO-d6, and then loaded into the microcoil probe. The analytes for NMR analysis were 300-fold more concentrated than for LC-MS and LC-EC analysis. After NMR analysis, the analytes were recovered and volatile analytes were analyzed by GC-MS, which provided further structural information on the identity of the markers. Unequivocal structural identification of the markers of interest was based on comparisons of analytical results with those of authentic standards.
Figure 3.2: The analytical strategy used to identify metabolites in the work presented.
3.4.1 Correlation of Analytical Results across Platforms:

When integrating analytical platforms offline, it is important to be able to correlate data across the platforms to ensure that the same analyte is observed with the different detectors, or when analytes are observed in one but not all detectors. In the work presented, we needed to correlate the retention times between the LC-MS and the LC-EC detectors. These two detectors have differences in sensitivity and are known to detect different compounds, thus metabolites observed in one might not be detectable in the other. For example, the mass spectrometer is less sensitive than the electrochemical detector and an analyte detected with EC might not be detected above background with the MS but if the expected retention time is known, it is possible to search for a unique mass in the mass spectrometer. The retention time was expected to be different between the two systems because separate LC instruments were used with each detector, each with different void volumes.

To determine the exact differences in void volumes and retention times between the two systems, six standards with a range of polarities were analyzed in the LC-MS and the LC-EC systems. For their separation the chromatographic conditions were kept the same. As summarized in Table 3.1, the retention time of the six standards (except ascorbic acid which was not observed in the LC-MS), differed by up to ten-minutes. The correlation of the retention time was however linear across the gradient with a regression of 0.995 which was used for correlation of retention times of the markers of interest.

Correlation between the LC-EC and LC-MS results with the NMR results was based on the reproducibility of the retention times during fractionation of the metabolites. Retention time drifts are caused by changes in column temperature, column back-pressure and can also be
affected by column aging. To minimize day-to-day drifts, the column temperature was kept constant at 32 °C, and the column pressure was monitored. Any drastic changes in column pressure were solved before injection. Some retention time changes are expected as the column ages, thus known metabolites in the plasma extract were used to monitor and adjust for minor changes (to within one-minute) in the retention time (e.g. uric acid which elutes at ~ 12 minutes in plasma pool extract). If major changes in retention times were observed, the collected fractions were not used for subsequent analysis.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Positive/Neg ion</th>
<th>RT (Mass Spec)</th>
<th>RT (CoulArray)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void Volume</td>
<td></td>
<td>9.80</td>
<td>9.60</td>
</tr>
<tr>
<td>Ascorbic Acid (ASC)</td>
<td></td>
<td></td>
<td>13.94</td>
</tr>
<tr>
<td>Uric Acid (URIC)</td>
<td></td>
<td>24.26</td>
<td>26.52</td>
</tr>
<tr>
<td>Tyrosine (TYR)</td>
<td>+/-</td>
<td>26.32</td>
<td>31.15</td>
</tr>
<tr>
<td>Kynurenine (KYN)</td>
<td></td>
<td>34.11</td>
<td>38.22</td>
</tr>
<tr>
<td>Tryptophan (TRP)</td>
<td></td>
<td>40.24</td>
<td>48.36</td>
</tr>
<tr>
<td>Melatonin (MEL)</td>
<td></td>
<td>49.03</td>
<td>57.47</td>
</tr>
</tbody>
</table>

Table 3.1: Comparison of retention times between the LC-MS and LC-MS platforms
3.4.2 Metabolite Characterization

After optimization of all the analytical steps, the next step was the structural identification of the markers of interest. For identification of the markers, the exact mass was first searched against the METLIN and HMDB databases. For database searches, the mass tolerance was kept at 10 ppm to reduce the number of hits. The database hits were filtered based on MS/MS, \(^1\)H NMR and GC-MS analysis. Unequivocal assignment of the structures was based on comparison of the analytical results with authentic standards.

Identification of C10

Fraction C10 contained a high concentration metabolite (C10) which was thought to be tryptophan (TRP) from LC-EC analysis. MS and NMR were therefore used for structural confirmation.

LC-MS analysis of the fraction C10 showed a peak with retention time at 40 minutes, an elution that, when compared to that from LC-EC was within the calculated retention time from the correlation experiments (Figure 3.4A). The mass spectrum of fraction C10, shown in Figure 3.4B, exhibited an ion at \(m/z\) 205.0962 \([\text{M+H}]^+\) as the base peak. The mass spectrum also exhibited an ion at \(m/z\) 227.4779, which was consistent with the sodiated adduct of the metabolite C10 and an ion at \(m/z\) 409.1852, as the peak of highest mass which was attributed to the dimerization of C10. HCD MS/MS fragmentation of the metabolite exhibited a fragment ion at \(m/z\) 188.0690 \([\text{M-NH}_3]^+\), and \(m/z\) 146.0954 from fragmentation across the beta carbon of the indole ring.
The 1H NMR spectrum of fraction C10 (Figure 3.4B bottom panel) was used to support the assignment of the metabolite, C10 as Trp. In the aromatic region (Figure 3.4B inset), of the 1H spectrum of fraction C10 exhibited five protons, two triplets at 7.01 ppm and 7.09 ppm (J=8.32 Hz), two ortho-coupled doublets at 7.36 ppm and 7.58 ppm (J=8Hz) and a singlet at 7.21 ppm. A highly de-shielded proton was also observed at 10.89 ppm which was the –NH proton in the indole moiety. These analytical results matched an authentic standard of TRP.

A.

LC-MS

Positive Ion MS TIC

Negative Ion MS TIC

LC-EC
Figure 3.4 (A) LC-MS and LC-EC retention time of Fraction C10 (B) MS and 1H NMR spectra MS/MS and 1H NMR analysis of Fraction C10. Based on these results, Fraction C10 is identified as tryptophan
Identification of components in D05

Even after the fractionation prior to MS and NMR, due to the complexity of the metabolome, it is not always possible to obtain pure compounds. LC-MS analysis of fraction D05, showed the presence of three distinct molecular masses, an indication that the fraction was comprised of multiple compounds. Therefore, before NMR analysis, to reduce the possibility of signal overlap, fraction **D05** was subjected to a re-fractionation step using the same LC conditions (column and mobile phases) used in both LC-EC and LC-MS, which ensured that the analytes eluted in the same order. Also in the initial fractionation step, one-minute time-based fractions had been collected. For re-fractionation, to reduce the possibility of contamination of closely eluting analytes, each minute was time-sliced five times (five fractions each of 200 µL were collected each minute). As shown in **Figure 3.5**, re-fractionation of fraction **D05** yielded three distinct UV peaks (**D05_1**, **D05_2** and **D05_3**), which were isolated for further analysis.
Figure 3.5: LC-UV (280 nm) profile of re-fractionation of Fraction D05. Initial LC-MS results indicated that D05 was not pure and consisted of three distinct compounds. For NMR and GC-MS analysis, D05 was therefore first re-fractionated. Each minute was time-sliced five times.

D05_1 was a low concentration metabolite. The ESI-mass spectrum of D05_1 shown in Figure 3.6A, exhibited an exact mass at \(m/z \) 212.0019 [M-H], and also a fragment ion at \(m/z \) 132.0443, derived from a neutral loss of \(\text{SO}_3\text{H} \). **D05_1** was putatively identified as indoxyl sulfate (ISA) based on database hits, the results were also consistent with previously published MS/MS spectra of indoxyl sulfate [42]. After re-fractionation, enough material could not be isolated for NMR analysis. **D05_1** was however subjected to GC-MS analysis. Prior to GC-MS analysis, **D05_1**
was converted to its trimethylsilyl derivative to increase its volatility. The GC mass spectrum of **D05_1**, shown in **Figure 3.6B**, exhibited an ion at \(m/z \) 277 as the base peak, which was attributed to the migration of the TMS group [43] followed by a loss of \(\text{SO}_3\text{H} \). The fragment ion at \(m/z \) 73 is from the loss of a TMS group. A TMS derivatized authentic standard of ISA also showed the same fragmentation pattern as **D05_1**
Fraction **D05_2** exhibited a mass of 137.0233 [M-H]. When searched against the databases, this mass yielded three possibilities, para, meta, and ortho salicylic acid. These three compounds are all positional isomers, and are indistinguishable by MS fragmentation. NMR was therefore used to determine the isomer represented by **D05_2**. In the aromatic region of the 1H NMR spectrum of fraction **D05_2** (**Figure 3.7**), four protons were observed, two ortho coupled doublets at 7.66
ppm (J=7.37 Hz) and 6.61 ppm (J=8.3 Hz) and two triplets at 7.14 ppm (J= 6.98 Hz) and 6.59 ppm (J=6.98). The pattern of resonances (two doublets and two triplets) was consistent with a 1,2 substitution on a benzyl ring. The aromatic region of a 1,3 substitution(meta-salicylic acid) would exhibit a singlet, two doublets and a triplet, while a 1,4 substitution (para) would exhibit two doublets. The aromatic region of fraction D05_2 also exhibited two broad proton resonances at 6.71 ppm and 7.32 ppm which were attributed to the hydroxyl group on the 2 position and on the carboxylic acid. D05_2 was therefore identified as ortho salicylic acid. Co-injection of D05_2 with ortho-salicylic acid yielded a single peak.

![LC-UV D05](image)

Figure 3.7 LC-UV (280 nm) profile of re-fractionated fraction D05 (Top). The aromatic region of ¹H NMR spectrum of metabolite D05_2 indicates it is a 1,2 substituted benzyl ring (Bottom).
The largest chromatographic peak, \textbf{D05_3}, exhibited a mass at 195.0815 [M+H]$^+$ which was consistent with caffeine. The proton spectrum of fraction \textbf{D05_3} exhibited four singlets, three of which integrated to three protons and were observed at 3.8 ppm, 3.42 ppm and 3.2 ppm, the other singlet integrated to a single proton and was observed at 8.01 ppm, (the NMR results of caffeine are not very diagnostic because it only has four signals and they are all singlets). Co-injection of fraction \textbf{D05_3} with caffeine yielded a single peak, thus \textbf{D05_3} was identified as caffeine.

\textit{Characterization of E09, a low level Metabolite}

Fraction \textbf{E09} contains a low concentration metabolite which was structurally characterized using a combination of MS and NMR. \textbf{E09} had been putatively identified as indole-3-propionic acid (I3PA) based on a retention time match with an authentic standard of I3PA on the LC-EC (Figure 3.8A).

For LC-MS analysis, although no apparent peak could be detected above the background, the retention time could be correlated from the LC-EC as previously discussed, and at the expected retention time (54 minutes) a mass in the negative ion mode at m/z of 188.0715 [M- H]$^-$ was extracted. This mass corresponded to that of I3PA to within 1 ppm. The ion count of the parent mass was observed at only 10^{-3} which although sufficient to provide a molecular mass, was not sufficient for MS/MS fragmentation. Further characterization of the fraction was therefore performed using NMR and GC-MS.

For NMR analysis, 2 nmol (UV 280) of \textbf{E09} was isolated from three separate extractions of the plasma extract. In the aromatic region of the 1H NMR spectrum showed the presence of an indole moiety which had been observed in the Trp metabolite (Figure 3.4 bottom panel). These
resonances consisted of four protons, two ortho-coupled doublets at 7.34 ppm ($J=8.2$ Hz) and 7.52 ppm ($J = 8.4$Hz), and two triplets at 7.07 ppm ($J=7.81$ Hz) and 6.98 ppm ($J=7$Hz). A highly de-shielded proton at 10.78 ppm attributed to the –NH proton on the five-membered indole ring was also observed. These resonances matched peak-to-peak with those of an authentic standard of I3PA as shown in Figure 3.8B.

\[\text{Figure 3.8 (A) E09 is a low concentration metabolite as seen in LC-EC separation of the human plasma pool. (B) the aromatic regions (6.5-11ppm) of the } \text{^1H NMR analysis of 2 nmoles of E09 shows the presence of an Indole moiety. A comparison of the NMS spectrum with the spectrum of an authentic standard of indole-3-propionic acid shows a peak-to-peak match.} \]
For GC-MS analysis, the analyte (E09) was recovered after NMR analysis and the NMR solvent dried down under vacuum. To improve its volatility and in-turn sensitivity, E09 was first trimethylsilylated. GC-MS analysis of the trimethylsilylated E09 (E09-TMS) showed a peak that eluted at ~15.7 minutes. The mass spectrum exhibited a mass at m/z 333 as the peak of highest mass (Figure 3.9). This was consistent with the addition of two trimethylsilyl (TMS) groups to E09 when compared to the exact mass measurement. The mass spectrum also exhibited fragment ions at m/z 202 [M-131]+ and m/z 73 [M-206]+. The fragment ion at m/z 202, which is also the base peak, arises from α-cleavage at the β carbon of the trimethylsilylated carbonyl ester.

The resulting mass spectrum of E09-TMS showed 94% similarity to trimethylsilylated indole-3-propionic acid (I-3PA) based on the chemical library search (NIST08.L). Library spectra are generated from standards which give relatively pure spectra, however, sample spectra are usually much noisier than library spectra thus the score is usually not 100%. GC-MS analysis of a trimethylsilylated authentic standard of I-3PA, showed similar results to the isolated fraction matching both the retention time and the fragmentation pattern (Figure 3.9).
Figure 3.9 A comparison of the retention time and EI-MS fragmentation of trimethylsilylated E09 and indole-3-propionic acid. The GC-MS results are identical confirming E09 as indole-3-propionic acid.
Identification of Indole Metabolites by LC-MS and GC-MS

In addition to fractions C10, D05_1 and E09, two other indole compounds (D06 and D12) were also structurally characterized using exact mass measurements and GC-MS analysis. Preliminary NMR analysis did not yield an interpretable NMR spectrum due to the low concentration of the analytes. It was however possible to identify the compounds using a combination of LC-MS and GC-MS analysis.

D06 exhibited molecular ions in both the negative and positive ion modes at \(m/z \) 204.0662 \([\text{M-H}]^-\), and \(m/z \) 206.0807 \([\text{M+H}]^+\). A database search of both masses yielded three possibilities (Figure 3.10), 5-methoxyindole acetate (5MA), indole-3-lactic acid (13LA) and cinnamoglycine (CMG). As shown in Figure 3.10, the MS/MS spectrum of D06 (negative ion) exhibited a fragment ion at \(m/z \) 158.0601, from the loss of the carboxyl acid group. This fragment ion is common to all three compounds. All three compounds can however be analyzed by GC-MS and are distinguishable by EI-MS fragmentation thus GC-MS was used to distinguish them. Prior to GC-MS, D06 was derivatized to its TMS ether. Analysis of the TMS derivative of D06 showed a molecular ion at \(m/z \) 421 which is consistent with the addition of three TMS groups. These results eliminated the possibility of 5MA and CMG both of which have two active hydrogens. GC-MS analysis of D06 also exhibited fragment ions at \(m/z \) 406 \([\text{M-CH}_3]^+\), \(m/z \) 202 as the base peak and the fragment ion at \(m/z \) 147 \([(\text{Me}_2\text{-Si-O-Si-Me}_2)]^+\) the latter being indicative of two TMS groups in close proximity [44]. D06 was therefore assigned as ILA. The assignment of D06 as ILA was further supported by comparison of the analytical results with an authentic standard of ILA.
A.

B.

Figure 3.10 Chemical structures of the three possible compounds in D06. In the negative ion mode all three compounds can lose the carboxylic acid group as a neutral fragment. (B) Fraction D06 is identified as indole-3-lactic acid based on its retention time, MS/MS fragmentation and GC-MS spectra. Confirmation as indole-3-lactic acid is however based on GC-MS results. Fraction D12 was also subjected to GC-MS analysis.
In the GC-MS, trimethylsilylated **D12 (D12-TMS)** eluted at 14 minutes and its EI mass spectrum (Figure 3.11) exhibited a mass at m/z 319 [M]+ as the ion of highest mass as well as a fragment ion at m/z 304 [M-CH₃]+. Its GC- mass spectrum also exhibited a fragment ion at m/z 202, as the base peak, and this ion is consistent with an indole compound with side-chain carbons at the alpha and beta positions of C-3. The assignment of **D12** as indole acetic acid was supported by comparison of its analytical results with those of an authentic standard.

Figure 3.11 EI mass spectrum of trimethylsilylated **D12**. The fragment ion at m/z 202 is characteristic to all trimethylsilylated indole compounds with a carbon beta to the indole ring.

The metabolites identified in the work presented are summarized on **Table 3.2**. Although the relevance of the metabolites identified in this work is yet to be established previous studies have
shown that the metabolites indoxyl sulfate and indole-3-propionic acid, are produced from the metabolism of tryptophan by the enzyme tryptophanase in the gut microbiome [42]. In the work presented, we have demonstrated the importance of combining multiple analytical platforms for the structural identification of biomarkers in a metabolomics study. This is exemplified by the identification of the metabolite in Fraction E09. From LC-MS analysis, the molecular weight (elemental composition) can be deduced while structural confirmation is based on both GC-MS and 1H NMR experiments. In addition, multiple analytical platforms enable structural characterization of metabolites that cannot be identified from a single platform. This is demonstrated in the characterization of the metabolite in D06, the exact mass and database results shortlists three compounds which are eliminated by both LC-EC and GC-MS results. We identified seven compounds using a combination of mass spectrometry and NMR. In addition to increasing the confidence in identification, multiple analytical platforms that give complementary information also reduce the number of standards that may need to be synthesized or purchased for comparison.
<table>
<thead>
<tr>
<th>Fraction #</th>
<th>Compound ID</th>
<th>Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Tryptophan</td>
<td>LC-MS, NMR</td>
</tr>
<tr>
<td>D05</td>
<td>1. Indoxyl Sulfate</td>
<td>LC-MS, GC-MS</td>
</tr>
<tr>
<td></td>
<td>2. Salicylic Acid</td>
<td>LC-MS, NMR</td>
</tr>
<tr>
<td></td>
<td>3. Caffeine</td>
<td>LC-MS, NMR</td>
</tr>
<tr>
<td>D06</td>
<td>Indoxyl-3-Lactic Acid</td>
<td>LC-MS, GC-MS</td>
</tr>
<tr>
<td>D12</td>
<td>Indoxyl-3-Acetic Acid</td>
<td>LC-MS, GC-MS</td>
</tr>
<tr>
<td>E09</td>
<td>Indole-3-Propionic Acid</td>
<td>LC-MS, GC-MS, NMR</td>
</tr>
</tbody>
</table>
used to confirm a structural assignment but not for de-novo structural identification which requires 2D experiments. The advantage of NMR over MS to identify isomers is demonstrated in the analysis of **D05_2**, identified as ortho-salicylic acid which from the exact mass has three possibilities which are distinguished by NMR. Thus, despite its relatively low sensitivity, especially when used with a microcoil probe, NMR proved to be of significant value in this metabolomics study.

3.5 Conclusions

The primary challenge in metabolomics is the unequivocal structural identification of compounds identified as biomarkers. The work presented clearly shows the necessity and also demonstrates the effectiveness of using multiple analytical platforms combined with database searches in the structural elucidation of metabolites of interest.

3.6 References

Chapter 4:
The Metabolism of Select Vitamin D Analogs and 1α, 25 (OH)₂-3-epi Vitamin D₃ by Rat Cytochrome P450 24A1 Hydroxylase.

Published in *Archives of Biochemistry and Biophysics*, and *Mass Spectrometry Reviews*.

4.1 Introduction

Vitamin D3 is a prosecutesteroid hormone rather than a true Vitamin because its main source is its endogenous biosynthesis from its precursor 7-dehydrocholesterol, present in the skin [1]. Vitamin D3 is mainly associated with the regulation of calcium and phosphorus homeostasis and in bone mineralization [2]. It is also important for proper functioning of other biological systems, including the immune, cardiovascular, and reproductive systems [3-6].

Vitamin D3 is biologically inactive. Its bioactivation by the sequential action of two specific cytochrome P450 hydroxylase enzymes, results in the formation of the biologically active metabolite, 1α, 25-dihydroxy Vitamin D3 (1α, 25 (OH)2D3) (Figure 4.1). Upon dietary ingestion or biosynthesis, Vitamin D enters the circulatory system and is transported to the liver, where it is first hydroxylated to form 25-hydroxy Vitamin D3 (25 (OH)D3 [7, 8], which is the major circulating form of Vitamin D3 and the immediate precursor of the most potent hormonal form of the Vitamin D3, 1α,25(OH)2D3. C25-hydroxylation, is the initial step in activation of Vitamin D3 into 25-hydroxyVitamin D3 and is mostly unregulated, whereas the 1α-hydroxylation, the final step in the activation of 25-hydroxyVitamin D3 into 1α, 25(OH)2D3 in the kidney, is stringently regulated [9-12]). The production of 1α,25(OH)2D3 in the kidney is up-regulated by the parathyroid hormone and down-regulated through negative feedback, by 1α,25(OH)2D3. Other regulators include calcium, phosphate, and growth hormone, prolactin and fibroblast growth factor 23 (FGF 23) [13].
Figure 4.1 Biosynthesis and bioactivation of 1α, 25 (OH)2 Vitamin D3 in man from 7-dehydrocholesterol. Reprinted from ref [11].
4.2 Biological Relevance of Vitamin D

$1\alpha, 25(\text{OH})_2\text{D}_3$ is the most important biological regulator of calcium metabolism. It stimulates the absorption of dietary calcium through the intestines and participates in its calcium’s incorporation into the skeleton [12, 14]. Without adequate levels of $1\alpha, 25(\text{OH})_2\text{D}_3$ in the blood, the body cannot absorb or use calcium, which is essential for the electrochemical signaling between brain cells. The reduced absorption of calcium and phosphorus through the intestine also leads to poor skeletal integrity. In children, Vitamin D deficiency results in rickets, a bone disease characterized by bowed legs and deformed ribs; and in adults Vitamin D deficiency results in osteoporosis [15].

The presence of the Vitamin D receptor in cells other than those involved in the regulation of calcium metabolism (i.e. bone, kidney and the small intestines), led to the discovery of other functions of $1\alpha, 25(\text{OH})_2\text{D}_3$ that are not associated with calcium and phosphorus homeostasis [16]. In recent years, $1\alpha, 25(\text{OH})_2\text{D}_3$ has been shown to be involved in the regulation of cell proliferation, differentiation, and immunomodulation. Many of these activities suggest potential therapeutic applications for $1\alpha, 25(\text{OH})_2\text{D}_3$ in a variety of diseases including cancer [17, 18]. Despite its pleiotropic applications, a major limitation to the use of $1\alpha, 25(\text{OH})_2\text{D}_3$ as a therapeutic agent is its potent calcemic activity, which leads to hypercalcemia. When used at supraphysiologi cal levels, $1\alpha, 25(\text{OH})_2\text{D}_3$ results in the formation of renal stones, soft tissue calcification and can even be lethal [19, 20]. Also, $1\alpha, 25(\text{OH})_2\text{D}_3$ has a short half-life as it is rapidly metabolized in its target tissue by a multi-catalytic enzyme cytochrome P450 24A1 hydroxylase (CYP24A1) [21].
The calcemic effects and short half-life of 1α,25(OH)2D3, has stimulated a search for alternative Vitamin D analogs with a longer half-life and which only weakly stimulate bone calcium mobilization or intestinal calcium absorption, while retaining the desired biological activity [11, 22, 23] These Vitamin D analogs are synthesized by altering the structure of A–ring, seco–B–ring, CD–ring, and/or the side chain of 1α,25(OH)2D3 (Figure 4.3). The rationale behind such structural modifications is aimed to specifically resist CYP24A1-mediated metabolism thus extending the half-life of the analogs, in-turn prolonging their biological activities within target cells [11, 22, 23].

4.3 Metabolism of 1α, 25(OH)2D3 by CYP24A1 Hydroxylase

1α, 25(OH)2 D3 is rapidly inactivated in its target tissues through modification of the side-chain and the A-ring in four different pathways as illustrated in Figure 4.2. The C-24 oxidation pathway, is the major metabolic pathway, and it is initiated by hydroxylation at C-24 by CYP24A1 and yields the end product calcitroic acid [24, 25]. The C-23 and C-26 oxidation pathways are minor metabolic pathways initiated by hydroxylation at C-23 and C-26 respectively, and both lead to the formation of the end product, 1α,25(OH)2-23,26-lactone [26-28]. In a Vitamin D supplemented state, excess 25(OH) D3 may also be converted to other similar side-chain metabolites via the C-23 and C-24 oxidation pathways leading to the termination of their physiological activity [29]. The C-3 epimerization pathway, is the only A-ring modification pathway and leads to the inversion of configuration of the C-3 hydroxyl group from β to α, yielding 1α,25(OH)2-3epi-D3. The C-3 epimerization pathway was first reported in human keratinocytes by Reddy et al. and has since been observed in human colon carcinoma
cells, bovine parathyroid cells, rat osteosarcoma cells, and various cultured cell lines [30-32]. Significantly, 1α, 25(OH)2-3-epi-D₃, has been found to be equipotent with 1α,25 (OH)₂D₃ but without its calcemic effects and it is therefore considered a potential therapeutic agent [33, 34].

Figure 4.2: Metabolic pathways of 1α, 25(OH)₂D₃. Adapted from [35]
4.4 Project Goal

In the work presented in this chapter, we investigated the metabolism of two Vitamin D₃ analogs possessing a 16-ene-23-yne modification (Figure 4.3). Analogs with the 16-ene-23-yne were synthesized with the aim of blocking metabolic inactivation through the C23 and C24 oxidation pathways. 1α, 25-dihydroxy-16-ene-23-yne-Vitamin-D₃ [2], the archetype of all analogs featuring 16-ene-23-yne modification, was found to have 4- to 12-fold higher potency than 1α,25(OH)₂D₃ in inducing differentiation and inhibiting proliferation of human myeloid leukemia cells without causing hypercalcemia [36, 37]. The mechanism of the metabolism of 2, has however not been studied. In this work we investigated the metabolism of 2. We also investigated the metabolism of 1α, 25-dihydroxy-16-ene-23-yne-26, 27-dimethyl-Vitamin-D₃ [3], which is structurally similar to 2 except the distal carbon has been extended with methyl groups. Other analogs with a similar methyl extension as 3 were found to have remarkable biological properties when compared to 1, and some have even entered clinical drug development stage [38, 39].

We also investigated the metabolism of 1α, 25(OH)₂-3-epi-D₃ (4) in comparison to that of 1. As discussed previously, 3 was found to be equipotent to 1 in inhibiting cellular proliferation and in suppressing parathyroid hormone secretion in bovine parathyroid cells. Compound 3 however, does not have the calcemic effects of 1 which makes it a potential therapeutic agent [33, 34]. To understand the mechanisms associated with the biological activity of 3, we investigated its metabolism by CYP 24A1 and compared it to the metabolism of 1 by the same enzyme.
Figure 4.3 The chemical structures of 1α, 25-dihydroxyVitamin D₃ [1], Its analogs 1α, 25-dihydroxy-16-ene-23-yne-Vitamin D₃ [2], and 1α, 25-dihydroxy-16-ene-23-yne-26, 27 dimethyl Vitamin D₃ [3], and its natural metabolite 1α, 25-dihydroxy-3-epi-Vitamin D₃ [4]
4.5 Materials and Methods

This work was done in collaboration with Dr. G. Satyarayana Reddy of Epimer LLC and Brown University and his former doctoral student Dr. Steve Rhieu. All metabolism and HPLC experiments were performed by Steve Rhieu.

Chemicals

Crystalline 1, 2, 3, 4, 25-hydroxyVitamin D3 (25(OH)D3), 1α, 25,26-trihydroxy-16-ene-23-yne-Vitamin D3 were synthesized by Dr. Milan Uskokovic (Hoffman-La-Roche, Nutley, NJ). All known natural metabolites of 1 were biologically synthesized using an isolated perfused kidney (IPK) as described previously [40]. All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and used without further purification.

Preparation of enzymes

Recombinant rat CYP24A1 was expressed in E.Coli and purified as previously described [41]. Purified CYP24A1 samples with A_{417}/A_{280} ratio exceeding 1.0 were considered pure for biochemical assay. Bovine adrenodoxin (ADX) and adrenodoxin reductase (ADR) were expressed in E. Coli and purified as described [41, 42]. All enzymes were purified using an AKTA™ FPLC system (GE Healthcare, Chalfont St. Giles, UK) and stored at -80 °C prior to use.

CYP24A1 Reconstitution assay

The CYP24A1 reconstitution assay consisted of a mixture CYP24A1 (0.5 µM), ADX (0.5µM), ADR (0.5 µM), and Vitamin D substrate i.e. compounds 1-4 (5µM) in 1 mL of 50 mM phosphate buffer, pH 7.4. After pre-incubation at 37 °C for 15 min, the reaction was initiated by
addition of NADPH (Final concentration 1 mM). After incubation at 37 °C for 5 minutes, the reactions were terminated by adding 2 mL of methanol followed by the addition of 2 µg of 25(OH)2 D3 as an internal standard. A time course study of metabolism of 2, 3 and 4 was performed as described above except the buffer contained 0.1 µM ADX, 0.1 µM ADR, and 0.4 µM CYP24A1 over a 5-60 minute time period.

Extraction of Lipid-Soluble and Water Soluble Metabolites

After termination of the metabolism reaction with methanol, the reactants were extracted by adding 4 mL of dichloromethane (DCM). The organic layer containing lipid-soluble metabolites was evaporated under a stream of nitrogen and the residue re-dissolved in hexane/isopropanol (85:15, v/v) for HPLC analysis. The aqueous layer containing the water-soluble metabolites was acidified with a drop of concentrated hydrochloric acid and re-extracted with DCM. The DCM fraction was dried with a stream of nitrogen and the residue re-dissolved in hexane/isopropanol/methanol (80:10)19, v/v/v) for HPLC analysis.

It should be noted that only the lipid soluble metabolites of 2 and 3 in comparison to the lipid-soluble metabolites of 1 were analyzed while the water soluble metabolites of 4 in comparison to those of 1 were analyzed. The lipid soluble metabolites of 4, were a focus of a previous dissertation from Vouros lab [43].
Purification of metabolites using High-performance liquid chromatography (HPLC)

The isolated extracts obtained from the CYP24A1 reconstituted assays were subjected to HPLC analysis using a Waters System Controller (Millennium 3.2). A photodiode array detector (Model 996) was used to monitor the typical spectral characteristics of the Vitamin D cis/triene chromophore (λ_{max} at 265 nm and λ_{min} at 228 nm). HPLC separation was performed on a normal-phase HPLC column Zorbax-SIL column (250 mm × 4.6 mm) (Dupont, Wilmington, DE). In the analysis of 1, 2 and 3 three different solvent mixtures at a flow rate of 2 mL/min were used, as follows: (1) 10% isopropanol in hexane for initial separation, (2) 6% isopropanol in hexane for enhanced resolution of the metabolites, (3) 15% isopropanol in methylene chloride for further purification. The metabolites produced from the IPK were purified in the same way as described above. In the analysis of the metabolites of 4, two different solvent mixtures were used also at a flow rate of 2 ml/min as follows: 1) 15% isopropanol hexane for separation of lipid-soluble metabolites 2) 10% isopropanol and 10% methanol in hexane for water-soluble metabolites.

Gas Chromatography/Mass Spectrometry (GC/MS)

GC/MS analysis was performed using an Agilent GC system 6890 equipped with a mass-selective detector MSD5973. Prior to GC-MS analysis, the metabolites collected from the HPLC purification step were first trimethylsilylated in a 1:1 (v/v) mixture of anhydrous acetonitrile and Power SIL-Prep (Alltech Associates, Deerfield, IL) at a final concentration of 10 µg/mL and incubated at 70 °C for 15 min. All samples were analyzed on a HP-5MS GC capillary column (5% phenyl siloxane; 30 m × 0.25 mm × 0.25 µm). A 5µl injection of each sample was made into the injector port in the split mode at a ratio of 1:10. The inlet temperature was set to 230 °C, a
temperature gradient was used for separation as follows: the oven temperature was initially at 150 °C and ramped at a rate of 10 °C/min to final temperature of 300 °C, the temperature was held at 300 °C for 5 minutes. Helium was used as a carrier gas at a flow rate of 0.8 mL/min. Full-scan electron impact spectra across the mass range of m/z 50-800 were acquired in each run and the published spectra were averaged and background subtracted.

ESI-MS analysis (Infusion)

The molecular weight of the metabolites of 3 was confirmed by ESI-MS analysis. The substrate and its metabolites were directly infused into the mass spectrometer at a flow rate of 10 μL/minute. Prior to infusion, the underivatized Vitamin D compounds were dried down under vacuum and reconstituted in acetonitrile modified with 0.1% formic acid to a final concentration of 2 μg/mL.

Mass spectrometry data were acquired on an Agilent 6330 Ion Trap mass spectrometer (Santa Clara, CA) operated in the positive ion mode, with N2 as a dying gas and the capillary voltage held at -1900V. Full scan mass spectra of each compound were acquired with a mass range of 100-650 a.m.u. 6300 Series Ion Trap HPLC-MS software Vers. 6.1 and 6300 Series Trap Control Software Vers. 6.1 (Bruker Daltonik, Bremen Germany), were used to control the instrument and for data processing.

Periodate oxidation of metabolites of 3

The metabolites of 3 (g* and h* (Figure 4.4)) from the CYP24A1 reconstitution assay were purified as described above. Each metabolite (1μg) in 15 μL of methanol was subjected to
treatment with 15 µL of 5% (w/v) sodium periodate at 25 °C for 30 min. Sodium periodate was used to determine if any of these two metabolites contained a vicinal diol. The reaction products were dried under nitrogen and subjected to HPLC analysis.

4.6 Results and Discussion

4.6.1 Metabolism of Vitamin D Analogs by CYP24A1

Isolation of Metabolite by HPLC

The HPLC profiles of the lipid soluble metabolites of 1, 2 and 3 produced by CYP24A1 are shown in Figure 4.4. As expected, 1 was extensively metabolized into several polar metabolites as shown in Figure 4.4A. The metabolites of 1 were identified as 1α,24(R),25(OH)3D3 (d*), 1α,25(OH)2-24-oxo-D3 (a*), 1α,23(S),25(OH)3-24-oxo-D3 (c*), 1α,23(OH)2-24,25,26,27-tetranor-D3 (b*), and calcitriol lactone (e*) based on co-elution with the authentic standards of the known metabolites of 1 [44, 45]. The analog 2 was metabolized into a single polar metabolite (f*) while the analog 3 was metabolized into two polar metabolites, g* and h* (Figure 4.4B and 4.4C). For structural characterization of the metabolites f*, g*, h*, each metabolite was isolated by HPLC then the trimethylsilylated derivative of each compound was subjected to GC-MS analysis.
Figure 4.4 HPLC profiles of the lipid soluble metabolites of the substrates 1, 2 and 3. For metabolite quantitation 25 (OH) D₃ was used as the internal standard (IS)

Structural Characterization of the metabolites of 2 and 3

Structural characterization of Vitamin D compounds is usually done by GC-MS due to the reproducibility and predictability of GC-MS mass spectra. Vitamin D compounds are not volatile and are usually first derivatized with trimethylsilyl (TMS) to increase their volatility. GC-MS analysis of derivatized Vitamin D compounds yields characteristic fragment ions that are unique
to derivatized Vitamin D compounds. The electron impact (EI) mass spectral pattern of 1α, 25 (OH)₂ D₃ is used as a template in assignment of fragment ions of Vitamin D compounds. The EI-mass spectrum of derivatized 1α, 25 (OH)₂ D₃ is depicted in Figure 4.5. In addition to the molecular ion, M⁺ (m/z 632), fragment ions resulting from the successive losses of TMSOH groups (a loss of 90 mass units) from each trimethylsilylated hydroxyl group are observed. The fragment ions at m/z 217 and m/z 501 [M – 131]⁺ originate from the cleavage of the A-ring. The A-ring fragment ions are characteristic to Vitamin D compounds with two hydroxyl groups (-OTMS after derivatization) at C-1 and C-3 and are detected in all Vitamin D compounds in which the seco-steroid structure (A-Ring) remains intact after metabolism, or in new analogs with that structural feature. The fragment ion at m/z 131, is from cleavage of the side chain at C24-C25, a fragmentation that is also characteristic to derivatized Vitamin D compounds and is also used as a diagnostic ion in identifying changes to 1α, 25 (OH)₂D₃ either in synthetic analogs or in metabolites.
Figure 4.5 Fragmentation of TMS derivative of 1α, 25 (OH)₂ D₃. This fragmentation pattern serves as a template in the structural identification of Vitamin D compounds.

Structural characterization of the Vitamin D compounds analyzed in this work was based on comparison of each metabolite’s mass spectral characteristics with mass spectral characteristics of its respective precursor analog. The fragmentation of 1 was used as a template in assigning fragment ions of the analogs whose mass spectral characteristics were in turn used as templates in assigning structural changes of their respective metabolites. Prior to GC-MS analysis, each compound was derivatized to its trimethylsilyl (TMS) ether to increase its volatility.
The mass spectra of 2-TMS and its metabolite f* are shown in Figures 4.6A and 4.6B respectively. The mass spectrum of 2-TMS exhibited a molecular ion at m/z 626 [M]+. The spectrum also exhibited fragment ions at m/z 536 [M-90]⁺ and m/z 446 [M-(2x90)]⁺ from the sequential losses of trimethylsilanol (TMSOH) moieties. The mass spectrum also exhibited additional fragment ions that are characteristic of derivatized Vitamin D compounds at m/z 217, m/z 495 and m/z 131. The fragment ions at m/z 217 and m/z 495 [M-131]⁺, are associated with cleavage of the A-ring, while the fragment ion at m/z 131 arises from the cleavage of the side-chain across C24-C25. These characteristic fragment ions are significant in establishing whether the integrity of the A-ring or the side-chain is maintained after metabolism or in newly synthesized Vitamin D compounds.

The mass spectrum of trimethylsilylated f* (f*-TMS), exhibited an ion at m/z 624 as its highest detectable mass (Figure 4.6B) but did not exhibit the molecular ion peak at m/z 714 since the latter is beyond the mass range of our instrument. However, the molecular mass can be inferred indirectly from consideration of the masses of key fragment ions. Specifically, the presence of the fragment ion at m/z 583 ([M−131]⁺, from the cleavage of the A-ring, can be related to a parent ion of m/z 714. Based on this finding, we concluded that metabolite f* differed from its parent compound by an additional hydroxyl group (-OTMS after derivatization). Moreover, the fragment ions at m/z 624 ([M−90]⁺) and m/z 534 ([M-2x90]⁺) reflected the sequential losses of TMSOH moieties further supporting the conclusion that they originate from a molecular species of m/z 714. The mass spectrum of f* also exhibited fragment ions at m/z 217 and m/z 583 an indication that the integrity of the A-ring was maintained which ruled out the possibility of the A-ring being the site of hydroxylation. The absence of the fragment ion at m/z 131 that had been
observed in the precursor molecule 2 is indicative of a modification to the end of the side chain. The presence of a fragment ion at m/z 611 [M−103]⁺ represented a loss of [·CH₂OTMS] group from the side chain of f* suggesting C26 as the possible site of hydroxylation. The fragment ion at m/z 147 [(Me₃-Si-O-Si-Me₂)⁺] indicated the presence of two trimethylsilyloxy groups in close proximity [46] at C25 and C26, which further confirmed C26 as the site of hydroxylation (Figure 4.6B). Conclusive structural assignment of f* as C26-hydroxy-2, was based on comparison of the mass spectral characteristics of the synthetic standard of 1α, 25,26(OH)₂-16-ene-23-yne-D₃ which gave a fragmentation pattern virtually identical to that of f*-TMS (Figure 4.6C).
Figure 4.6 Mass spectra (GC-EI-MS) of the analog 2(A), and its metabolite f* (B), and an authentic standard of 1α, 25, 26(OH)3-16-ene-23-yn-D3 (C)
Structural Identification of metabolites of 3

As in the previous case, the mass spectrum of the precursor analog 3 (trimethylsilylated) was used as a template for comparison with the mass spectral characteristics of its metabolites g* and h*. The mass spectrum of 3, shown in Figure 4.7A, exhibited a molecular ion ([M]+) at m/z 654. The mass spectrum also exhibited the fragments associated with sequential losses of trimethylsilylanol (m/z 564 and m/z 474), the characteristic fragment ions arising from the cleavage of the A-ring at m/z 217 and at m/z 523 ([M−131]+), and the fragment ion arising from the side-chain cleavage across the C24-C25 bond at m/z 159.

While missing the molecular ion peak of m/z 742 due to limited mass range of the instrument, by analogy to its precursor compound, the spectra of trimethylsilylated g* (g*TMS) and h* (h*TMS) exhibited fragment ions at m/z 652 [M-90]+, m/z 562 [M-2x90]+ and m/z 611 [M-131]+ which provided indirect evidence about the molecular weights (742 Da) of the TMS derivatized metabolites. These results also suggested that the metabolites g* and h* differed from their precursor compound by an additional hydroxyl group. The GC-MS spectra of both metabolites exhibited the characteristic fragment ion at m/z 217 an indication that the integrity of their A-ring was maintained, thus ruling out the A-ring as the site of hydroxylation. The characteristic fragment ion from the side-chain cleavage which had been observed at m/z 159 in the spectrum of the precursor compound was shifted to m/z 247 in the spectra of both metabolites which suggested that the site of hydroxylation on both metabolites was on the side-chain, either at C26 or at C26a. The fragment ions at m/z 117 and m/z 625 in the spectrum of g* suggested C26 was the site of hydroxylation (Figure 4.7B) while the fragment ion at m/z 103 in
the spectrum of h* was consistent with hydroxylation at C26a (Figure 4.7C).

Figure 4.7 Mass spectra (GC-EI-MS) of the analog 3 and its metabolites g* and h*
Confirmation of molecular mass of g* and h* by ESI-MS

As discussed above, the molecular ion of trimethylsilylated g* and h* was not observed with GC-MS analysis. Electrospray ionization-MS (ESI-MS) was therefore used to detect the intact molecules of g* and h* (Figure 4.8). ESI-MS is used to detect the intact molecule because it is a soft-ionization technique thus extensive fragmentation of molecules does not occur unlike with electron impact-MS (EI-MS) the ionization mode used in GC-MS.

As in the previous studies, the mass spectrum of the precursor analog was compared with the mass spectrum of its respective metabolites. The full scan mass spectrum acquired for 3, exhibited a sodiated molecular ion [M+Na]^+, at m/z 461. Similarly, the metabolites g* and h* were detected as sodium adducts, both at m/z 477 (Figure 4.8B and 4.8C). The ESI-MS are in agreement with addition of a single hydroxyl group to each metabolite because the molecular weight of both metabolites is 16 Da higher than that of the precursor compound 3.
Figure 4.8 ESI-MS analysis of the analog 3 and its metabolites g* and h*, ESI-MS analysis was done to confirm the molecular weight of the metabolites since the molecular ion was not observed in GC-MS.

Periodate oxidation of g* and h*

The proposed structures of g* and h* from the MS results, showed that the two metabolites had the same mass, but differed in the position of the hydroxyl group, with g* hydroxylated at C26 and h* hydroxylated at C26a. The two metabolites were therefore tested with sodium periodate
for the presence of a vicinal hydroxyl functionality. Periodate oxidizes vicinal hydroxyls to form less polar carbonyl compounds [21]. The HPLC profile of g* and h* after reaction with sodium periodate, shown on Figure 4.9 indicated that g* was oxidized to a less polar compound g**, while h* resisted oxidation. These served to confirm the structural assignment of g* and h* as C26-hydroxyl-3 and C26a-hydroxyl-3 respectively (Figure 4.8B and 4.8C).

Figure 4.9 HPLC profiles of the metabolites g* and h* before (panel A and C) and after periodate oxidation (panel B and D). The metabolite g* is oxidized to a less polar metabolite (g**) an indication it contains a vicinal hydroxyl.
Metabolic Stability of Vitamin D analogs 2 and 3

The metabolic stability of 2 and 3 in relation to 1 after incubation with CYP24A1 was determined by HPLC analysis. The concentration of each unmetabolized substrate and its metabolites was determined by comparing the area under the LC peak of the each substrate and its respective metabolite(s). The results, shown on Figure 4.10, indicated that 2 and 3 were more stable than 1, with 4.2 µM (84%) of 2, and 2.53 µM (50.6 %) of 3 remaining un-metabolized when compared to 1.64 µM (32.8%) of 1.

![Figure 4.10](image.png)

Figure 4.10 The relationship between un-metabolized 1, 2 and 3 and their respective lipid soluble metabolites produced from incubation with CYP24A1. The concentration of each compound was based on HPLC analysis
4.6.2 Metabolism studies of $1\alpha,25(OH)_2D_3$ and $1\alpha,25(OH)_2$-3-epi-D_3 using rat CYP24A1 reconstitution system.

To understand the metabolic pathway undertaken by the C3-epimer (4) of $1\alpha,25(OH)_2D_3$ (1), we investigated the metabolism of 4 by CYP24A1 and compared it to the metabolism of 1. The lipid soluble metabolites of 4, were a focus of a previous thesis from the Vouros group and are not discussed here [43]. The water soluble metabolites were therefore analyzed in this study. 1, is metabolized by CYP24A1 to a single water soluble metabolite calcitroic acid and this was used as a reference in establishing the metabolism of 4.

The HPLC chromatogram of the water-soluble metabolites of 1 and 4 are shown on Figure 4.11A and 4.11B respectively. 1 and 4 were each metabolized to a single water-soluble metabolite (X and X*) by CYP24A1, which were isolated for structural characterization by GC-MS. Metabolite X, is known to be the final product of the metabolism of 1, calcitroic acid.
Structure identification of water-soluble metabolites X and X* using GC-MS

After isolation and purification with HPLC, each metabolite (X and X*) was subjected to GC-MS analysis for structural characterization. Prior to analysis, the metabolites and their respective substrates were derivatized into their respective TMS ethers to increase their volatility. The mass spectra of the trimethylsilylated metabolites are shown in Figure 4.12.

The trimethylsilylated metabolite of X (X-TMS) exhibited a molecular ion at m/z 590. The mass spectrum also exhibited fragment ions at m/z 500 and m/z 410 which were attributed to the sequential losses of trimethylsilanol moieties (90 Da). The characteristic fragment ions at m/z 217 and m/z 459 ([M-131]+) were derived from A-ring cleavage. Another characteristic fragment ion was observed at m/z 117 which is indicative of a loss of the TMS-derivatized...
COOH group accounts for the fragment ion at m/z 117, indicating the presence of a TMS ester function in the side-chain of X. As shown in Figure 4.12B, the mass spectral analysis of trimethylsilylated metabolite X* gave a fragmentation pattern virtually identical to that of X-TMS. Although the two compounds (X and X*) had the same mass, they exhibited different retention times in GC, at 22.97 (X) minutes and 22.05 (X*) minutes. The difference in retention time was evidence that these were different compounds.

Figure 4.12 GC-MS spectra of the water soluble metabolites of 1\alpha,25(OH)_2D_3 and 1\alpha,25(OH)_2-3-epi-D3. Although the mass spectra area identical the two compounds elute at different GC retention times.
Metabolic stability of 1α,25(OH)₂-3-epi-D₃ over 1α,25(OH)₂D₃

For direct comparison of metabolite levels measured by HPLC, 1α,25(OH)₂D₃ and 1α,25(OH)₂-3-epi-D₃ were incubated at the same concentration of the two substrates 1 and 4 in a rat CYP24A1 reconstituted system (details in methods). Relative amounts of un-metabolized substrates and their respective metabolites are shown in Figure 4.13. The amounts of un-metabolized substrates of 1α,25(OH)₂D₃ and 1α,25(OH)₂-3-epi-D₃ were not significantly different from each other. However, the amount of 3-epi-calcitroic acid (the water soluble metabolite of 4) was ~three-fold lower than that of calcitroic acid. This finding provides definitive evidence that 1α,25(OH)₂-3-epi-D₃, shows higher metabolic stability over its parent substrate although both are readily metabolized through the C24 oxidation pathway.
In the work presented above, using a combination of mass spectrometry (GC-MS and ESI-MS) and HPLC analysis, we have demonstrated that Vitamin D analogs with a 16-ene-23-yne modification resist metabolism by CYP24A1 when compared to 1α, 25 (OH)₂ D₃. The presence of the triple bond on the side-chain protects the analogs from hydroxylation through the C23 and C24 pathways although they are still susceptible to C25 hydroxylation. However, as shown with
the analog 3, extending the distal carbon with an additional methyl group at C26 makes this compound more susceptible to CYP24A1 hydroxylation.

In the present work, we also established that 1α, 25 (OH)-3-epi-D3 is metabolized by C24A1 to 3-epi calcitroic acid, as illustrated in Figure 4.14. This establishes that both 1α, 25 (OH)₂ D₃ and its C3-epimer are metabolized through the same C24 oxidation pathways. The 3-epi calcitroic acid is however produced at a ~3-fold lower concentration than that calcitroic acid which provided proof that 1,25(OH)₂-3-epi-D₃ shows stability against CYP24A1 metabolism over 1,25(OH)₂D₃, providing a reason why 1α, 25-(OH)₂-3-epi D₃ exerts its biological activities for longer duration than 1α, 25 (OH)₂ D₃.

4.7 Conclusions
The discovery of new biological functions of 1α, 25(OH)₂D₃, along with the development of Vitamin D analogs, has reinvigorated the Vitamin D field over the past two decades. As demonstrated in the work presented in this chapter, mass spectrometry remains at the forefront for the structural characterization of Vitamin D compounds and their metabolic pathways.
Figure 4.14 The complete C24 oxidation pathway of the metabolism of 1α,25(OH)₂D₃ and 1α,25(OH)₂-3-epi-D₃ by CYP24A1
4.8 References:

29. Reddy, G.S., et al., *23-carboxy-24,25,26,27-tetranorVitamin D₃ (calcioic acid) and 24-carboxy-25,26,27-trinorVitamin D₃ (cholacalcioic acid): end products of 25-

Chapter 5:

Preliminary Results and Future Directions.
This chapter summarizes some preliminary results and also offers recommendations for future work.

5.1 Preliminary Results

The work presented in chapter 3 of this thesis, highlighted the importance of using multiple analytical platforms for structural characterization of metabolites. A critical analytical step that was not discussed was sample preparation which dictates the types of metabolites extracted and the amount of metabolites available, which can dramatically affect the quality of the subsequent data.

In chapter 3, for the purposes of LC-MS and NMR analysis, which require more sample (have higher LODs) than LC-EC, the amount of plasma was scaled-up from the initial profiling experiments from 125 µl to 2.5 ml (Figure 5.1). Also, after metabolite extraction, the supernatant was dried down and re-dissolved in a smaller volume (100 µl) of mobile phase, for a 10-fold increase in metabolite concentration prior to LC fractionation. Analytical results however showed only a 2-fold increase in metabolite concentration, an indication that there were significant sample losses. This was of concern because most of the metabolites of interest are present at very low levels. If not recovered adequately we might not detect them in LC-MS and especially in NMR.

In light of the sample loss concerns, we are now working towards improving our sample recovery to ensure that we can detect all analytes. We hypothesize that some of sample loss is due to inefficiency in sample recovery and/or to analyte degradation. Presented in this section are
some preliminary results on use of DMSO as a keeper, and use of chelating agents as we work towards improving our sample recovery.

Figure 5.1 Flow-chart of the metabolite concentration
Efficiency in Sample Recovery using DMSO as a keeper:

To increase metabolite concentration, after metabolite extraction, our analytes of interest are pre-concentrated by drying and re-suspending in a smaller volume of mobile phase. Losses are thought to occur by adsorption to the walls of the micro-centrifuge tubes during drying. When the extraction solvent (acetonitrile) is highly volatile as it dries out the analytes stick to the walls of the tubes and when the extract is re-suspended in a smaller volume of solvent not all metabolites are re-dissolved. As a first step to improve the recovery of our analytes, we added 10 µL of DMSO (as a keeper) to our extracted samples before drying. The role of a keeper is to maintain the analytes in solution during the drying process thus reducing sample loss to the walls of the tubes [1]. DMSO was chosen due to its high boiling point and its strong general solvating properties (“universal solvent”). Preliminary results indicate that DMSO improved the recovery of hydrophobic compounds, but had little effect on hydrophilic analytes. This is to be expected as the more hydrophobic the analyte the higher its affinity toward acetonitrile solvation. Studies are underway to replicate these results and to quantify the exact improvement in analyte recovery.

Use of Chelating Agents to Reduce Analyte Degradation:

As stated previously, a second possible source of sample loss may occur through oxidation and degradation. Analyte degradation was thought to be from analyte oxidation by metals, which are inevitably present, as they are released from metal co-factors that stabilize some proteins. These metals are left in solution after protein precipitation, and are extracted with the metabolites and may thus degrade our analytes of interest.
To remove these metals, we are exploring the use of chelating agents. To date, we have explored three commonly used chelating agents: ethylenediamineacteic acid (EDTA), ethyleneglycolactetic acid (EGTA) and citric acid. We added the chelating agents to our extraction solvent, acidified acetonitrile. After metabolite extraction, the metabolite extract was analysed by LC-EC.

When compared to extraction without a chelating agent, there were no observable changes of metabolite concentration with EDTA or EGTA. However as shown in Figure 5.2, with citric acid as a chelator, an overall increase in the metabolite concentration was observed. Although both EDTA and EGTA are generally considered better chelating agents than citric acid, their chelating efficiency is reduced at low pHs due to the high pKa of the acidic groups in both EDTA and EGTA [2]. For example EDTA chelates at pH 4 and above [3] while our extraction solvent is at pH 3.1.

Future work will be directed towards establishing whether the increase in metabolite concentration is significant enough to allow detection of metabolites (by MS and NMR) that were previously not detectable or whose signal was not high enough for characterization. More work is also directed towards exploring other chelating agents which are active at low pH e.g. oxalic acid.
Figure 5.2 Comparison of metabolite extraction from human plasma using acidified acetonitrile (Top) and acidified acetonitrile modified with acid. The use of citric acid for extraction leads to an overall increase in metabolite concentration.
5.2 Future Directions

Microscale LC-MS-NMR Platform

Chapters 2 and 3 of this dissertation highlighted a streamlined approach of combining LC-MS and offline NMR to ensure that each detector was utilized at its optimal sensitivity. This approach was successfully utilized in the structural characterization of metabolites.

In Chapter 2, the use of an integrated LC-MS-NMR platform was demonstrated for analysis of plant cell cultures was demonstrated. This approach utilized LC-UV as a rapid method for profiling changes in cell cultures during optimization, followed by structural characterization of the individual components of the optimized cell cultures. Future recommendations for cell culture analysis would be to use tandem mass spectrometry in place of a UV-detector during optimization. The use of MS/MS for analyte selection is much more specific and would reduce interference from background and can also be useful if analytes of interest do not contain a chromophore. In the example with benzophenanthridine alkaloids, we observed that all our analytes of interest exhibited a similar neutral loss transition, thus the use of MS/MS would provide more targeted and specific selection of analytes of interest.

Vitamin D analysis

Chapter 4 of this thesis illustrated GC-MS was utilized in the structural elucidation of vitamin D compounds. GC-MS is expected to retain this role as the method of choice for structural elucidation of Vitamin D compounds due to its reproducibility and predictability.
5.3 References

