Self-pulsing and chaos in distributed feedback bistable optical devices

Herbert G. Winful and Gene D. Cooperman

Advance Technology Laboratory, GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, Massachusetts 02254

(Received 28 September 1981; accepted for publication 19 November 1981)

We show that the light transmitted by a nonlinear distributed feedback structure can be steady (time independent), periodic, or chaotic depending on the intensity of the input cw beam. The feasibility of an experimental demonstration of such behavior is discussed.

PACS numbers: 42.65.Bp, 42.80.Ks, 42.82.+n, 42.65.Cq

There has been much recent interest in optical systems whose transmission is a multivalued function of a control parameter such as the input intensity. These bistable optical devices exhibit a rich variety of dynamic phenomena including hysteresis, discontinuous transitions, and self-pulsing instabilities. Ikeda et al. first pointed out that in the particular case of a ring cavity, the periodic self-pulsing solutions can bifurcate into a chaotic state in which the output intensity wanders randomly in time. Such behavior was subsequently observed by Gibbs et al. who simulated the ring cavity by a hybrid electrical/optical device incorporating a delay line. It has been suggested that the chaotic behavior is a consequence of the fact that systems with delay in the feedback loop are described by difference equations which may possess instabilities in regions where the associated differential equations are stable. It is also considered an open question whether a standing-wave Fabry–Perot filled with a nonlinear index medium will exhibit self-pulsing and chaos.

In this letter we consider the dynamic behavior of a bistable distributed feedback structure whose steady-state properties were studied by Winful et al. Because the feedback mechanism is distributed continuously throughout the nonlinear medium, the system is accurately described by a set of partial differential equations instead of difference equations. The nonlinear distributed feedback structure is the optical analog of the Toda lattice (one-dimensional anharmonic mechanical lattice) and of the nonlinear electrical filter of Hirota and Suzuki. These latter structures support periodic pulse train solutions which are lattice solitons of the associated Korteweg de Vries equation. We find that the nonlinear optical distributed feedback structure also exhibits output pulsations when driven by a cw input. As the input intensity is increased, the output eventually becomes chaotic.

We consider a nonlinear medium with a periodic perturbation of its linear refractive index of the form [Fig. 1(a)]

\[n = n_0 + n_1 \cos 2\beta z, \]

where \(n_1 < n_0 \). Such an index variation is achieved in practice by corrugating the surface of a waveguide or by introducing bulk periodic changes in the dielectric constant. The periodic structure serves as a reflection filter for light whose wavelength is close to the Bragg condition \(\lambda \approx \lambda_B = 2\pi n_0/\beta x \). Intensity-dependent refractive index changes are described by a nonlinear polarization

\[P_{NL} = n_2 \delta n(E) E / 2\pi, \]

where the index change \(\delta n \) satisfies a Debye relaxation equation

\[\tau \frac{\partial \delta n}{\partial t} + \delta n = \frac{1}{2} n_2 |E|^2. \]

The nonlinear coefficient \(n_2 \) is related to the third-order susceptibility \(\chi \). Such a model for material relaxation applies directly to Kerr media. It can also be derived from a two-level atomic model when the incident field is far off resonance. In that case the relaxation time \(\tau \) is simply the longitudinal relaxation time \(T_\perp \). Expressions (1)–(3) characterize the material properties and can be substituted into Maxwell's wave equation

\[c^2 \frac{\partial^2 E}{\partial z^2} = \frac{\partial^2}{\partial t^2} [E + 4\pi(P + P_{NL})] \]

to solve for the field \(E \). Here \(P = (n^2 - 1)E^2/4\pi \).

The field within the medium is taken as a sum of forward and backward propagating waves whose complex amplitudes are slowly varying functions of time and distance in the \(z \) direction:

\[E = E_f(z,t) e^{i(\omega z - \beta z)} + E_t(z,t) e^{-i(\omega z + \beta z)}. \]

Then combining Eqs. (1)–(5), applying the slowly varying envelope approximation and discarding terms with spa-

![FIG. 1](image-url)
tial variation faster than $e^{\alpha t}$, we obtain the following set of coupled first-order equations:

\[
\frac{\partial E_{\beta}}{\partial t} + \frac{n_0 \partial E_{\beta}}{c \partial \tau} = ik E_{\beta} e^{-\alpha \Delta \beta} + \gamma \delta n_{\alpha} E_{\gamma} + \delta n_{\gamma} E_{\beta}, \tag{6a}
\]

\[
\frac{\partial E_{\gamma}}{\partial \tau} - \frac{n_0 \partial E_{\gamma}}{c \partial t} = -ik E_{\gamma} e^{\alpha \Delta \beta} - \gamma \delta n_{\beta} E_{\gamma} + \delta n_{\gamma}^* E_{\beta}, \tag{6b}
\]

\[
\tau \frac{\partial n_{\alpha}}{\partial t} + \delta n_{\alpha} = |E_{\gamma}|^2 + |E_{\beta}|^2, \tag{6c}
\]

\[
\tau \frac{\partial n_{\gamma}}{\partial t} + \delta n_{\gamma} = E_{\gamma} E_{\beta}^*, \tag{6d}
\]

where $\kappa = \pi n_0/\lambda_0$, $\gamma = \pi n_2/\lambda$, and $\Delta \beta = \beta - \beta_c$. The coupling constant κ is a measure of the strength of feedback per unit length provided by the structure. The fields are subject to zero-reflection conditions at the boundaries of the grating.

In steady state ($\partial / \partial t = 0$) these equations reduce to the set discussed in Ref. 4 which can be solved analytically. The result for the case $\Delta \beta = 0$ is given by

\[
I = \frac{J}{1 + \left(y_-^2 - y_+^2 \right) \text{sn}^2 \left[y_+ \left(y_-^2 - y_+^2 \right) \right]}, \tag{7}
\]

where J and I are the incident and transmitted intensities normalized by $|E_\gamma|^2 = 2\lambda / 3\pi n L$ and we define

\[
y_\pm = J \pm \left(|J| / 2 \right)^2 + (\kappa L)^2 \right)^{1/2}. \tag{8}
\]

The stability of the steady-state solution was investigated by solving the full time-dependent equations (Eqs. 6) numerically. The field equations were integrated along characteristics $\xi = z - ct/n_0$ and $\eta = z + ct/n_0$, and the material equations were evaluated at discrete time steps using known field values from adjacent grid points. The grid size was halved repeatedly until convergence was achieved.

For step inputs of intensity less than the critical turn-on intensity I_α, the output settles down to the steady-state values indicated in Fig. 1(b) by the solid line. This positive slope region is thus stable in steady state. For step inputs just greater than I_α, the output consists of a steady train of pulses whose period is less than twice the round-trip time within the grating. As the input intensity is increased, the self-pulsation frequency also increases and the pulse widths grow smaller. Figures 2(a) and 2(b) show typical self-pulsing solutions for input intensities of 4 and 6 in our dimensionless units.

In these simulations, the material relaxation time was taken to be $\tau = T/20$, where T is the transit time ($T = n_0 L / c$) through the grating. As the relaxation time is increased, the pulse amplitudes diminish. Eventually, the pulses are completely washed out when the relaxation time exceeds the transit time.

The pulsation frequency increases continuously with input intensity until at a certain critical intensity I_β the output becomes aperiodic. The transmitted intensity wanders in an apparently chaotic manner as a function of time. This behavior is shown in Fig. 2(c) where the input intensity was set at 9.

Physically one may understand the self-pulsing instability by considering the properties of a linear distributed feedback structure. For light whose wavelength lies in the stop band of the filter, the feedback provided by the structure is high and thus the cavity field is enhanced in the first few periods of the grating and drops off exponentially thereafter. For wavelengths outside the stop band, feedback is low, no enhancement of the field occurs, and the distribution is essentially uniform. Suppose now that one includes an intensity-dependent refractive index, and assume that at low input intensity the incident light wavelength lies within the stop band. Feedback is high, transmission is low, and the field builds up. As the input is increased, the high cavity field changes the refractive index of index of the grating, thus shifting the stop band. Eventually the structure is so detuned that the light wavelength no longer lies within the stop band. When this happens, feedback is reduced, transmission is high, and no field enhancement occurs within the cavity. This reduction of feedback and of cavity field causes the refractive index to relax back to its low value. The light wavelength now finds itself within the stop band, and the feedback increases once again. This process persists indefinitely, leading to a train of pulses.

The variable feedback situation that leads to self-pulsing may be simulated using a multiple mirror cavity of the type proposed by Szoke et al. and analyzed by Goldstone. Here the second cavity is a multiple mirror cavity of the type proposed by Szoke et al. and analyzed by Goldstone.

![FIG. 2](image-url) (a) Self-pulsing solution for a step input of intensity 4. The material relaxation time is $\tau = 0.05$ in units of the transit time. (b) Self-pulsing solution for a step input of intensity 6. (c) Chaotic solution. Input intensity $I = 9$.

H. G. Winful and G. D. Cooperman 299
flector providing high reflection (feedback) at low input intensity and low reflection at high inputs.

The observation of effects described here requires nonlinear materials whose index change relaxes in a time short compared to the transit time of light through the grating. One solid-state nonlinear medium with a large nonlinearity \((n^2 - 1.8 \times 10^{-6} \text{cm}^2/\text{MW})\) and subpicosecond response time is the polydiacetylene PTS (polytolene sulphonate). For a 1-cm-long grating waveguide of PTS and a coupling constant \(kL = 2\), the intensity required for operation in the self-pulsing regime is on the order of 25 MW/cm². A quasi-cw source for this particular structure might be a \(Q\)-switched solid-state laser producing 20-ns pulses. The transmitted signal would then exhibit a substructure consisting of pulses whose widths are in the 10-100-ps range.

Electron beam pumped cw Hg ion laser

J. J. Rocca, a) J. D. Meyer, and G. J. Collins b)

Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523

(Received 5 November 1981; accepted for publication 23 November 1981)

We have obtained cw laser action using electron beam excitation of a He-Hg mixture. This represents a new method of exciting cw lasers and offers the possibility of increased efficiency for ion lasers.

PACS numbers: 42.55.Hq, 42.60.Bv

We have obtained cw laser radiation on the 6149.9-Å line of the Hg⁺ (HgII: 7p²3P½ → 7s²3S½) by exciting a He-Hg gas mixture with a dc electron beam. This is the first time that a cw ion laser has been obtained using electron beam excitation. The dominant excitation mechanism is proposed to be charge transfer excitation of the HgII species. The electron energy characteristics of the positive column become even more undesirable for cw radiation in the VUV region because of the large density of energetic electrons. Hollow cathode ion lasers, for example, typically have an electron temperature of order 10⁴ °K, which is much too large.

The conventional manner of exciting cw ion lasers is to use electron collisions in the positive column region of a discharge. A positive column has roughly a Maxwellian energy distribution with a mean electron energy of 3 to 8 eV, depending on pressure, current density, bore diameter, and magnetic field strength. However, the ionization and excitation cross sections of many upper laser levels peak above 100 eV. Hence, only those energetic electrons in the tail of the Maxwell–Boltzman energy distribution are energetic enough to provide direct excitation. As a consequence very large current densities (hundreds of A/cm²) are generally required to excite noble gas ion lasers, resulting in laser operating efficiencies of 5 × 10⁻⁹. In the case of metal vapor ion lasers, the metal impurity, when added to the discharge, drastically lowers the electron temperature of the positive column plasma. As a result, the metal vapor concentration and the electron temperature cannot be independently optimized. The electron energy characteristics of the positive column become even more undesirable for UV and VUV ion lasers where the upper laser levels are in multiply ionized species. The laser operating efficiencies for Ar⁺⁺, Ar⁺, Kr⁺⁺, and Kr⁺⁺ lasers, for example, are typically 10⁻⁴. We believe that electron beam pumped ion lasers have the potential advantage of increased efficiency as well as the generation of cw radiation in the VUV region because of the large density of energetic electrons. Hollow cathode ion lasers have an electron beam component in the electron distribution, but it is small and inefficiently produced. The beam component accounts for typically only 10% of the total discharge cur-

a) Spectra-Physics Industrial Fellow.

b) Alfred Sloan Fellow, 1979-81.

FIG. 1. Schematic diagram of electron beam excited laser apparatus.