ULTRATHIN AND HIGHLY FLEXIBLE PARYLENE-C PACKAGED CARBON NANOTUBE FIELD EFFECT TRANSISTORS

A Dissertation Presented

by

Selvapraba Selvarasah

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Electrical Engineering

in the field of

Microsystems and Electron Devices

Northeastern University
Boston, Massachusetts
December 2010
ACKNOWLEDGMENT

I am very much obliged and thankful to all, for their great help and cooperation extended to me in the preparation of this thesis. First of all, I would like to thank my advisor, Prof. Mehmet Dokmeci, for all his help and guidance during this work. He has helped me in many ways from the day I have joined his group. I am very proud and honored to be his first student in his group at Northeastern University. He was always available for me to share his precious knowledge and thoughts. His encouragement and enthusiasm has motivated me in many ways to achieve my goals successfully. Secondly, I would like to thank Prof. A. Busnaina for his advice and financial support from the NSF-funded Nanoscale Science and Engineering Center for High-rate Nanomanufacturing. I would also like to thank Prof. S. Sridhar for his advice and financial support from Air Force Research Laboratory. I am happy to acknowledge Prof. L. Menon, Prof. Y. J. Jung, Prof. V. Harris, Prof. S. Sonkusale (Tufts University), and Prof. G. Miller (University of New Hampshire) for sharing their expertise with me. I would like to thank Prof. J. Hopwood for sharing his valuable knowledge with me about the low temperature etching process. I would like to thank fellow graduate students and post doctorates from Dana 325, CHN and eMRI, especially Prashanth, Juan, Chao, Evin, Myung, Dr. D. Mao, Dr. L. Chen, Dr. S. Somu, Dr. N-G. Cha, Dr. X. Xiong, Dr. S. Ryley, Dr. R. Banyal, Dr. D. Nagesha, Dr. P. Vodo, Dr. W. T. Lu, Dr. B. D. F. Casse and Dr. I. Kaur for sharing their valuable knowledge and experience which helped me get my work done efficiently. I would also like to thank Kostas facility, especially D. McKee, S. McNamara and R. Devito, for their support in utilizing the facility. Many thanks to our
collaborators at Stanford University (Prof. Z. Bao and Y. Chung) and Harvard Medical school (Prof. A. Khademhosseini and his group).

Above everything, I would like to thank my family, especially my parents, for their motivation, guidance and eternal love. My dad and mom have encouraged me to pursue PhD, and their kindness and support was very precious during my ups and downs in the last 6 years. I would not have achieved this PhD without their moral support, and hence I would like to dedicate this thesis to my parents. I would also like to thank my two brothers, sister, brother-in-law and niece for their encouragement. Finally, many more thanks to my lovely wife for her endless love and support.
ABSTRACT

Flexible electronics are promising alternatives to traditional silicon based electronics for applications that require characteristics such as lightweight, ease of fabrication, mechanical flexibility, low cost production, and able to be wrapped into complex shapes. The advances in organic materials and related processing techniques have enabled several emerging applications for flexible electronics such as electronic paper, wearable displays, large area antennas, RFID tags, etc. Despite the growing momentum in this field, the low field effect mobility of the organic molecules used in realizing these devices has limited their performance (eg. mobility of pentacene based transistor is ~1 cm2/Vs). Carbon nanotubes with their unique chemical, physical and mechanical properties are promising active materials for high performance electronic devices. The ability to deposit and pattern CNTs from solution phase over a large area presents them as ideal candidates for flexible electronics.

The goal of this thesis is to realize ultrathin, highly flexible and biocompatible electronic devices using solution processed SWNTs on flexible parylene-C substrates. Due to its excellent dielectric and passivation properties, parylene is also used as an encapsulation layer. The adhesion and gate dielectric properties of parylene-C for CNT based flexible devices are evaluated. Next, parylene-C packaged SWNTs based thin (12µm) film transistor is designed and fabricated, electrical characteristic before and after encapsulation is evaluated, and then its mechanical flexibility is studied. The stability of all-parylene CNTFETs are also investigated in 0.9% sterile solution of sodium chloride for 42 days. Finally, a room temperature integration of SWNTs into three dimensional architectures is demonstrated for the realization of high density flexible devices.
Table of Contents

Chapter 1 Flexible Electronics

1.1 Introduction .. 1
1.2 History of Flexible Electronics ... 3
1.3 Materials for Flexible Electronics .. 6
 1.3.1 Mechanically Flexible Substrates ... 7
 1.3.2 Gate Dielectric Materials ... 9
 1.3.3 Encapsulation ... 11
1.4 Fabrication Technology for Flexible Electronics ... 13
1.5 Applications of Flexible Electronics ... 14

Chapter 2 Carbon Nanotubes

2.1 Introduction .. 16
2.2 The History Carbon Nanotubes .. 16
2.3 Carbon Nanotube Synthesis .. 17
2.4 Structure and Properties ... 20
 2.4.1 Electronic Properties ... 23
 2.4.2 Optical Properties .. 25
 2.4.3 Mechanical Properties ... 26
 2.4.4 Chemical Properties ... 28
 2.4.5 Thermal Properties ... 28
2.5 Carbon Nanotube Assembly ... 29
2.9 Applications of CNTs .. 31

Chapter 3 Parylene-C: Deposition, Surface Characterization and Dry Etching

3.1 Introduction .. 32
3.2 Parylene and Its Applications ... 33
 3.2.1 Properties and Characteristics of Parylene ... 33
 3.2.2 Applications of Parylene-C .. 36
3.3 Results and Discussion .. 36
 3.3.1 Parylene Deposition Process .. 36
3.3.2 SURFACE PROPERTIES OF PARYLENE-C.................................39
3.3.3 PLASMA ETCHING OF PARYLENE-C..43

CHAPTER 4 PARYLENE-C DIELECTRIC FOR CARBON NANOTUBE
FIELD EFFECT TRANSISTORS...47
4.1 INTRODUCTION..47
4.2 FABRICATION OF PARYLENE-C BASED MIM STRUCTURE...........50
4.3 RESULTS AND DISCUSSION..51

CHAPTER 5 PARYLENE-C ENCAPSULATED SINGLE WALLED
CARBON NANOTUBES BASED THIN FILM TRANSISTORS.................59
5.1 INTRODUCTION...59
5.2 FABRICATION OF FLEXIBLE SWNTS TFTS..........................62
5.3 RESULTS AND DISCUSSION..67
 5.3.1 ELECTRICAL CHARACTERISTICS OF FLEXIBLE SWNTS
TFTS..67
 5.3.2 MECHANICAL EVALUATION OF FLEXIBLE SWNTS TFTS......71

CHAPTER 6 PARYLENE-C PASSIVATION FOR SWNTS FETS..............77
6.1 INTRODUCTION...77
6.2 FABRICATION OF PARYLENE-C PASSIVATED FLEXIBLE
SWNTS TFTS...81
6.3 RESULTS AND DISCUSSION..83

CHAPTER 7 BIOSTABILITY OF PARYLENE-C ENCAPSULATED
CARBON NANOTUBES FLEXIBLE TRANSISTORS...............................100
7.1 INTRODUCTION...100
7.2 DEVICE FABRICATION AND EXPERIMENTAL SETUP...............103
7.3 RESULTS AND DISCUSSION..106

CHAPTER 8 VERTICAL AND HIGH DENSITY SWNTS TRANSISTORS.. 110
8.1 INTRODUCTION...110
8.2 HIGH DENSITY VERTICAL ASSEMBLY OF SINGLE-WALLED
CARBON NANOTUBES..112
 8.2.1 FABRICATION OF 3D MICROPLATFORM..............................113
 8.2.2 DIELECTROPHORETIC ASSEMBLY OF 3D-SWNTS AND TWO
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINAL ELECTRICAL MEASUREMENTS</td>
<td>116</td>
</tr>
<tr>
<td>8.2.3 DEP SIMULATION</td>
<td>130</td>
</tr>
<tr>
<td>8.3 A VERTICAL SWNTS FIELD EFFECT TRANSISTOR</td>
<td>134</td>
</tr>
<tr>
<td>8.3.1 FABRICATION OF 3D SWNTS FET</td>
<td>135</td>
</tr>
<tr>
<td>8.3.2 ELECTRICAL CHARACTERIZATION OF VERTICAL SWNTS FETS</td>
<td>137</td>
</tr>
<tr>
<td>CHAPTER 9 CONCLUSION AND FUTURE WORK</td>
<td>144</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td>146</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>167</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>181</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1.1 Characteristics of silicon and flexible electronics................................. 2
2.1 Mechanical properties of carbon nanotubes.. 27
3.1 ICP etch recipes for low temperature (5ºC) and low pressure (5mTorr) parylene-C etching.. 44
4.1 Adhesion of different metals on oxygen plasma treated or untreated parylene-C surface.. 52
8.1 Comparison of DEP forces for different microelectrode geometries.
F_{DEP} is the calculated DEP force using eqn (2). F_{DEP}^n is the normalized DEP force to the smallest value which is obtained at $H=2828$ nm............. 125
8.2 Comparison of DEP forces for different microelectrode geometries.
F_{DEP} is the calculated dep force using eqn (2). F_{DEP}^n is the normalized DEP force to the smallest value which was obtained at Separation=2,702 nm... 128
8.3 Calculated transconductance and mobility values for the 3D CNTFET......141
LIST OF FIGURES

1.1 Current and future flexible devices. (a) A rollable pocket eReader by Readius, and (b) Nokia Morph concept shows future mobile devices which are stretchable and flexible...6

2.1 Schematics of tip-growth and extrusion mechanisms for carbon filament growth..18

2.2 The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The chiral vector \(C_h = n \mathbf{a}_1 + m \mathbf{a}_2 \equiv (n,m) \) is defined on the honeycomb lattice by unit vectors \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) and the chiral angle \(\theta \) is defined with respect to the zigzag axis..............................21

2.3 A schematic theoretical model for a single-walled carbon tube with the tube axis OB normal to: (a) the \(\theta = 30^\circ \) direction (armchair tube) (b) the \(\theta = 0^\circ \) direction (a zigzag tube), and (c) a general direction B with \(0< \theta < 30 \) (chiral tube)...22

2.4 Schematic structures of SWNTs and how they determine the electronic properties of the nanotubes. (a) A (10,10) arm-chair nanotube. Bottom panel: the hexagon represents the first Broulloin zone of a graphene sheet in reciprocal space. The vertical lines represent the electronic states of the nanotube. The center-line crosses two corners of the hexagon, resulting in a metallic nanotube. (b) A (12, 0) zigzag nanotube. The electronic states cross the hexagon corners, but a small band gap can develop due to the curvature of the nanotube. (c) The (14, 0) zigzag tube is semiconducting because the states on the vertical lines miss the corner points of the hexagon. (d) A (7, 16) tube is semiconducting...25

3.1 Chemical structure of different parylene types. (a) Parylene N, (b) Parylene C has one Cl atom in the benzene ring, (c) Parylene D has two Cl atoms in the benzene ring and (d) Parylene Nova HT has F atoms in the benzene ring...34
3.2 The parylene deposition sequence where the parylene dimer is decomposed into monomer then polymerization takes places.

3.3 Parylene-C deposition rate. The measured parylene-C thickness is plotted against amount of dimmer consumed.

3.4 Contact angle measurements from the as-deposited parylene-C surface.

3.5 (a) FESEM image of 10 μm thick Parylene film sealed on to a silicon substrate and (b) magnified view of (a).

3.6 Contact angle data from parylene surface after O2 plasma treatment.

3.7 Tricholorosilane (anti-stiction coater) treated parylene surface.

3.8 Contact angle measurements from as-deposited parylene surface soaked in an aqueous environment for 3 days.

3.9 Contact angle measurement from treated parylene surface (hydrophilic) in aqueous environments for 3 days.

3.10 Anisotropic profiles of (a) 55 μm thick parylene and (b) 10 μm thick parylene.

4.1 The cross section of MIM capacitor structure.

4.2 The percentage of failure of untreated and A-174 treated MIM devices.

4.3 Time dependent dielectric breakdown of A-174 treated MIM device.
(a) Staircase plot shows that the dielectric breakdown occurred at the 200th second at V=760V and (b) the optical photograph of the failed device from (a) where the area of the top electrode is 1.2x10^-3 cm^2.

4.4 Time dependent dielectric breakdown of parylene-C MIM capacitors of thickness starting from 1100 nm, 560 nm, and 330 nm down to 130 nm as a function of applied DC voltage. The active area of the device was 1.2x10^-3 cm^2.

4.5 The dielectric breakdown of thin parylene-C MIM capacitor as a function of parylene thickness where the Inset shows the magnified image of our results.

4.6 Time dependent dielectric breakdown of Parylene-C MIM capacitors treated with O2 plasma.

5.1 Parylene-C packaged SWNT TFTs. (a) 3D schematic of bottom gated SWNT TFT before parylene-C passivation. (b) Arrays of
SWNT TFTs fabricated on a 3-inch wafer illustrating wafer scale manufacturing capability. (c) The high resolution SEM micrograph of assembled SWNTs between source (S) and drain (D) electrodes of a transistor with a channel length of 10 μm and a width of 2000 μm respectively. Inset: Top view optical photograph of the same transistor fabricated from gold Source and Drain electrodes and an aluminum (bottom) Gate electrodes, where the thickness of the parylene-C gate dielectric was 1 μm. (D) The parylene film in which the devices were embedded was wrapped around an index finger and non planar flexibility of the transistors is illustrated in the inset. The process flow for fabrication of all-parylene TFT is described in Appendix C.......................... 64

5.2 I_{DS}-V_{DS} measurements (a) before and (b) after electrical breakdown from the flexible SWNT FETs. Drain to source current (I_{DS}) was recorded while voltage across the drain to source electrodes (V_{DS}) was swept from -1 to 1 with 10mV steps, where the gate voltage (V_{G}) was varied from -40 to 40V with 10V increments. After electrical breakdown, the device exhibited an ON/OFF ratio that is 2 orders of magnitude greater than that one before breakdown where ON and OFF currents are measured at V_{G} of -40V and 40V for V_{DS} = 700mV... 69

5.3 Transfer characteristics after electrical breakdown of metallic SWNTs from the channel region of the SWNT FETs (device from figure 5.2). As the gate voltage (V_{G}) of the transistor was increased from -40V to 40V with 10V increments, a pronounced decrease in conductance was observed which exhibited a p-type transistor behavior. The drain-source current (I_{DS}) was strongly modulated by the gate voltage as the V_{DS} was decreased from 1V to 0V. The transconductance deduced from the graph (slope in the linear region) was 0.5653 μS (V_{DS}=0.5V). The field-effect mobility of this device was calculated as ~2 cm²/Vs, where the parylene-C gate dielectric constant=3.2, L_{DS}=10 μm and W_{DS}=73 μm, respectively. Inset: magnified image of I_{DS}-V_{G} at V_{DS}=1 V indicating an ON/OFF ratio of 10³.......................... 70
5.4 Mechanical flexibility of Pa-C packaged SWNT TFTs (same device from Figures 5.2 and 5.3). (a) The optical image of a 12 µm thick of parylene-C embedded SWNT TFTs are wrapped around a pen refill with a radius (R) of 1.5mm which resulted in about ~ 9 layers around it. (b) Transfer characteristics after first bending cycle shows reduction in ON current before and after peeling off from the wafer, where \(I_{DS} \) dropped from 7.83 µA to 5.93µA (measured at \(V_G = -40V \)). (C) \(I_{DS}-V_G \) after the sixth cycle showed no degradation in the electrical performance of the devices.

5.5 Extremely Flexible SWNT TFTs (same device from Figure 5.2 and 5.3). Change in normalized ON current \((\Delta I/I_o) \) of parylene-C SWNTs TFTs is plotted as a function of the strain during each bending cycle. The maximum variation was ±8.9% measured at a radius of 1.5mm.

6.1 A 3D schematic drawing of bottom gated SWNT FETs fabricated on a 10 µm thick flexible Parylene-C substrate (b) an optical image of the same transistor (c) The high resolution SEM micrograph of DEP assembled SWNTs between source (S) and drain (D) electrodes (d) Cross sectional drawing of a Parylene-C passivated transistor.

6.2 Device characteristics of SWNT TFTs after a 1 µm thick parylene-C deposition where the average length of carbon nanotubes utilized in the experiments were nearly 2 µm. Devices from 1 to 5, 6 to 10 and 11 to 15 have channel lengths of 3 µm, 5 µm and 10 µm, respectively. (a) Measured statistical variation in two terminal resistance (at \(V_G = -40 \) V) and turn ON current (at \(V_G = -40 \) V) after 1 µm thick parylene-C encapsulation. More than 10% decrease in the two terminal contact resistance was measured in all SWNT FETs with L of 3 µm, 5 µm and 10 µm. The drop in the resistance is observed due to CNT densification and fixing the nanotube position at the metal-CNT interface after parylene coating. The transistors with shorter channel lengths (L= 3 µm and 5 µm) showed a 10% increase in ON current after encapsulation. Interestingly, longer channel
devices (L=10 µm) showed only marginal increment in ON current measurements which could be attributed to a disconnection of loosely connected nanotube bridges by the deposited parylene-C film. For example, device 14 exhibited only 0.86% of increase in the I_{ON} after the passivation. (b) Transfer characteristics (I_{DS}-V_G) of device 1 before and after parylene encapsulation. Before passivation, transistor exhibited $ON/OFF=\sim 2 \times 10^2$, $V_{TH}=-20$ V and $H_W=47.5$ V. After parylene-C passivation, the ON current of the device improved by 12.43% from its initial value but no significant change in V_{TH}, ON/OFF current ratio, and the hysteresis width was observed. A thin 1 µm parylene coating protected CNTs from the penetration of molecules and/or chemical spices in the environment (eg. gases, water moisture and carbon particles). It also acts as a barrier layer for the trapped charges that exist at the parylene-tube interface and on the CNT surfaces, and hence no change was observed in the V_{TH} and H_W after encapsulation.

6.3 Effects of parylene-C passivation in the electrical characteristics of a transistor in which more metallic carbon nanotubes still remained in the channel even after the current induced electrical breakdown. (a) The percentage of change in resistance, and ON and OFF current after passivation. The two terminal contact resistance (measured at $V_G=-40$ V) and the ON current (measured at $V_G=-40$ V) of the devices increased by more than 13%, and more than 53% increase in OFF current (measured at $V_G=40$ V) was also noticed in all devices. (b) The electrical characteristic of device 1 after passivation showed 40.04% and 63.4% increases in the ON and OFF currents. The two terminal contact resistance measured at $V_G=-40$ V resulted 34.09% drop for this device but the hysteresis width and ON/OFF current ratio remained unchanged. When devices were encapsulated with thin 1 µm parylene film, it fixed the position of the metallic tubes and also densified the loosely attached bundles, and created conducting metallic paths between source and drain electrodes which significantly increased both I_{ON} and I_{OFF} of the TFT. Accordingly, an upward shift in the
Suppression of gate hysteresis width and pinhole free coating of 1 µm film test results. After DEP assembly and subsequent I-V measurement in ambient environment TFT showed $R_{ON} = 172.3$ KOhm, $I_{ON} = 6.02$ µA and $H_W = 44.3$ V, respectively. Next transistor was treated in high vacuum (4.0×10^{-7}) for 19 hours and then immediately transferred to parylene deposition chamber. After 1 µm parylene-C passivation, transfer characteristics were measured again in ambient environment which resulted $R_{ON} = 371.4$ KOhm, $I_{ON} = 2.89$ µA and $H_W = 33.5$ V, respectively. After 19 hours in high vacuum, R_{ON} increased by 115.5% which reduced I_{ON} by 52% from their initial value, and the hysteresis width is suppressed by -10.8V. Moreover, the transfer characteristic curve shifted leftward which resulted in a $V_{TH} = -20$V and decrease in I_{OFF}. The reduction in the turn ON resistance and suppression of gate hysteresis width are caused by desorption of oxygen and water molecules after exposing to high vacuum.

The shift in the transfer characteristic curve and a decrease in I_{OFF} are caused due to increase in electron density after oxygen molecules were removed in vacuum. After 9 hours at 2×10^{-5} Torr in Janis ST-500 electrical probe station, I-V measurement showed no noticeable change in the transfer characteristic from that of after 1 µm parylene-C passivation. After 28 hours in vacuum, I_{DS}-V_G was measured and again no significant changes in the transistor properties were recorded. A thin 1 µm parylene-C encapsulated TFTs showed stable I-V results after 28 hours in high vacuum and demonstrated good barrier property.

Transfer characteristics of the SWNT TFT measured before and after 1 µm parylene-C deposition measured at $V_{DS}=1$ V. CNTs were exposed to vacuum (1 mTorr) for 2 hours and 15 minutes prior to the parylene-C polymerization.

Transfer characteristics of the SWNT TFT measured before and after 3 µm parylene-C deposition measured at $V_{DS}=1$V. CNTs were
exposed to vacuum (1 mTorr) for 2 hours and 15 minutes prior to the
parylene-C polymerization...98
7.1 Bionic eye implant (Boston)...101
7.2 (a) A cross section of parylene-C passivated TFT after opening the
contact areas, (b) The high resolution SEM micrograph of assembled
SWNTs between the source and drain electrodes, (c) Optical photograph
of TFTs after peeled off from a 3 inch wafer, and (d) Transfer
characteristic of a transistor after 1 µm parylene-C encapsulation...........105
7.3 A snap shot of the experimental setup during soak testing..............106
7.4 Transfer characteristics of the parylene-C encapsulated FETs
measured before and after 1µm parylene-C coating, and after soak
testing measured at V_{DS}=1V ...106
7.5 The percentage of change in the ON current of parylene-C packaged
TFTs after soak testing..108
8.1 Fabrication process for the micromachined 3D electrode and
(b) three dimensional schematic of vertically assembled SWNTs
after DEP assembly...115
8.2 Microplatforms for 3D assembly: (a-b) SEM micrographs of the
fabricated single electrodes, and (c-d) SEM and Zygo images of multi
(eight) electrode platforms where these electrodes have a vertical
separation of 1µm and an overlap distance of 3µm, respectively.............116
8.3 The 3D dielectrophoretic assembly yield from old (10MHz, 10Vp-p,
\text{time}=20sec, CNT concentration=1X) and new optimized (10MHz,
2Vp-p, \text{time}=1min, CNT concentration=5X) recipes. 3D electrodes
with a spacing of 1µm and an overlap distance of 3µm between
top and bottom electrodes were utilized in these experiments...............117
8.4 SEM images of destroyed 3D electrodes after DEP assembly using
old recipe due to electrolysis of DI water and/or parylene peel off
from joule heating. In (A) CNT solution aggregated and formed
agglomerated structure and (B) top electrode peeled off from the
chip..118
8.5 FESEM image of SWNTs assembled between the top and bottom metal at 10 MHz. (a) SEM micrograph of the top view of the 3D assembled SWNT bundles at 10 V_{pp} (b) A high angle frontal SEM image of the SWNTs assembled at 10 V_{pp} connecting the top and bottom metals (c) A high resolution image of bundled SWNTs assembled at 5 V_{pp}. (d) Side view of the assembled SWNT architecture assembled 5 V_{pp}..119

8.6 Measured two-terminal resistance of 3D devices before and after parylene-C encapsulation using DEP assembly at 10 V_{pp} and 10 MHz. After encapsulation the room temperature resistance dropped by (a) 12% (from 389 to 346 ohms) for a single electrode device and (b) where as for 3D multielectrode it went down from 66 to 36 ohms with 45% change in the resistance..121

8.7 Measured two-terminal resistance of the 3D single electrode devices. The amplitude of the AC electric field was increased from 1 to 10 V_{pp} at a frequency of 10 MHz which resulted exponential drop in the resistance with increasing voltage..122

8.8 A schematic drawing of the 3D assembly electrodes illustrating the Height (H) and Overlap distance (L), which can be varied to scale the DEP forces between the top and the bottom electrodes.................................123

8.9 Adjusting the distance between the top and the bottom electrodes allows control over the magnitude of the electric field. The vertical distance between the 3D electrodes (thickness of the parylene-C layer) was varied from (a) 269nm, (b) 1,052nm, (c) 2,085nm and (d) 2,828nm where the overlap distance was kept at 3µm. It is evident from the above SEM images (a-d) that as the height was reduced the diameter and the angle of incline of the assembled SWNT bundles have increased. Moreover, the length of the suspended 3D SWNTs decreased when the electrode height was reduced (this was more applicable to H \leq 1µm)……..124

8.10 The overlap distance between the top and bottom electrodes was changed from (a) 1,022nm, (b) 117nm, (c) 1,190nm (d) to 3,290nm.
As a result, more SWNT bundles assembled around the edges of the hemispherical top electrode as shown in the SEM micrographs through of the 3D devices (a) to (d) which resulted in 7, 9, 20 and 30 bundles, respectively.

8.11 Scaling the electrode geometry vs measured resistance. The two terminal resistances of the 3D SWNT devices exponentially decreased when the spacing and the overlap distance between the electrodes were reduced.

8.12 The changes in the measured two terminal resistance of the 3D SWNT devices after thermal annealing at 90 °C for 30 minutes. Seven such 3D devices with two different geometries were utilized, and at least a 20% decrease in their contact resistance was observed in most of the devices.

8.13 Simulation of SWNT transport during DEP assembly process. (a) shows the electric potential surface contour and the electric field stream lines for the SWNT in the initial stage of the assembly process, (b) shows the electric field surface and CNT transport trajectory during assembly. (c) shows the final position of the SWNT assembled in between 2 electrodes.

8.14 Fabrication of 3D SWNT based vertical Field Effect Transistors. (a) assemble nanotubes on microfabricated 3D electrodes (Cr/Au metal thickness is 50Å/750Å), (b) deposit 1µm thick Parylene-C gate dielectric material, (c) deposit Cr/Au gate electrode (50Å/750Å), and (d) open source and drain contacts using conventional photolithography (refer Appendix D for detailed information).

8.15 Optical photograph (top view) of the fabricated 3D CNTFET. Inset: magnified image of the active area where nanotubes are assembled.

8.16 I_{DS}-V_{DS} measurement for the CNTs breakdown. Metallic SWNTs were selectively burnt at a gate voltage of 20V as V_{DS} was varied from 0 to 15V with 1V increments.
8.17 SEM micrograph of the 3D SWNT FET after the metallic nanotubes were burnt by passing a current through them. The disconnected nanotubes are circled..138

8.18 Two terminal resistance from a sample device before and after the breakdown of metallic SWNTs..139

8.19 $I_{DS}-V_{DS}$ characteristics where V_{GS} is swept from -40V to 10V with 10V increments..140

8.20 $I_{DS}-V_{GS}$ characteristic of 3D CNTFET measured at room temperature. (a) A linear plot measured at $V_{DS}=-50$mV. Inset: magnified $I_{DS}-V_{GS}$ showing the transition from p-type to n-type behavior. (b) Semi logarithmic $I_{DS}-V_{GS}$ plot for $V_{DS}=-90$mV and $V_{DS}=-150$mV...142
Chapter 1

Flexible Electronics

1.1 Introduction

The development of semiconductor technology has been rapid and dramatic during the last several decades and has a major impact on all aspects of our society. Semiconductor materials such as germanium (Ge), indium phosphide (InP), silicon (Si), and gallium arsenide (GaAs) have been widely used in the microelectronics industry for many years [1]. Silicon is the most dominant material used in the integrated circuit (IC) industry due to its numerous advantages. First, Si is a readily available material and can operate at high temperatures because of its wider bandgap, and it can be easily oxidized which forms an electrical insulator and barrier layer for diffusion steps needed in IC fabrication [1]. The first Si based integrated circuit chip was fabricated by Texas Instruments and Fairchild Semiconductor in the early 1960s [1]. The companies have demonstrated several transistors and resistors to create logic gates and amplifier circuits. Currently, the Intel Core 45 nm process technology processor (Intel® Core™ i7-975 Processor Extreme Edition) which was launched in June 2009 consists of 731 million transistors on a small die [2]. The semiconductor technology has boomed in the last fifty
years yet there are numerous drawbacks that make it ideal for only high performance device applications. For example, the devices which are made from these silicon and conventional semiconductor materials are rigid and brittle, require sophisticated microfabrication techniques which include high temperature and high vacuum processing steps. Moreover, cost of production is very high and hence applied mainly to small area devices eg. Intel chips [3-6].

<table>
<thead>
<tr>
<th>Silicon electronics</th>
<th>Flexible electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid substrate</td>
<td>Flexible substrate</td>
</tr>
<tr>
<td>Brittle</td>
<td>Robust</td>
</tr>
<tr>
<td>Complicated processing</td>
<td>Easy fabrication</td>
</tr>
<tr>
<td>High temperature</td>
<td>Low temperature</td>
</tr>
<tr>
<td>High cost per unit area</td>
<td>Low cost per unit area</td>
</tr>
<tr>
<td>Small area products</td>
<td>Large area products</td>
</tr>
</tbody>
</table>

Table 1.1: Characteristics of silicon and flexible electronics

Flexible electronics have become the replacement of traditional silicon based electronics for applications that require characteristics such as lightweight, ease of fabrication, mechanical flexibility, low cost production, and able to be wrapped into complex shapes [3, 5-7]. The word ‘flexible electronics’ can also be referred to functional devices built on flexible substrates which are bendable, conformally shaped, elastic, lightweight, non-breakable, or roll-to-roll manufacturable. One can also call it plastic electronics because devices are usually made on mechanically flexible polymer substrates. Table 1.1 briefly summarizes the characteristics of silicon and flexible electronics. Moreover, the manufacturing techniques such as inkjet printing, imprint lithography etc. also enable large area fabrication of flexible devices by printing electronics on flexible substrates. Flexible electronics is a rapidly growing field and has
many applications in consumer, medical, and military sectors including wearable electronics, portable sensors, flexible displays, radio frequency identification tags, implantable devices, etc. [3, 5-9].

Technology is such an integral part of our daily life and is always evolving and demanding for more end user-friendly flexible devices such as Nokia Morph. To realize such devices they should able to be folded and unfolded easily which requires ultra mechanical flexibility and a robust encapsulation technique. In this dissertation, parylene-C polymeric material is utilized with single-walled carbon nanotubes to demonstrate a parylene-C packaged SWNT TFT technology for ultra flexible, high performance and biocompatible nano devices. Using this technology a high density and vertical transistor concept is next demonstrated to realize compacted flexible devices. First, an overview of flexible electronics and goal of this dissertation are discussed. Chapter 2 gives introduction to carbon nanotubes. The parylene-C characterization and electrical evaluation of thin parylene-C dielectric are mentioned in Chapter 3 and 4. Chapter 5 and 6 will focus on fabrication of all-parylene SWNT TFT and their mechanical flexibility, and parylene-C passivation for CNTFETs, respectively. The biostability of thin parylene-C encapsulated TFTs are confirmed in Chapter 7. Finally, high density and vertical field effect transistors are reported in Chapter 8.

1.2 History of Flexible Electronics

Flexible electronics has a long history where thinning silicon wafer approach was first realized to make flexible devices [10]. The first flexible device, solar cell arrays, was made in 1960s where Si wafers were first thinned to 100 µm and then they were
assembled on plastic substrates. Next, the low temperature deposition of hydrogenated amorphous silicon enabled the realization of Pt/a-Si:H schottky barrier solar cell on stainless steel substrate in 1976 [11]. In the early 1980s, Plattner et al. [12] and Okaniwa et al. [13, 14] made a-Si:H based schottky barrier solar cells on plastic substrates. The roll-to-roll fabrication of a-Si:H solar cells on steels [15] and organic polymer substrates [16] was also introduced in the beginning of early 1980s.

Brody et al. made the first thin film transistor (TFT) in 1968 using tellurium (Te) on a strip of paper [17, 18]. Later, they made TFTs on Mylar, polyethylene and anodized aluminum wrapping foil, and demonstrated their mechanical bending flexibility at a bending radius of 1/16” and devices remained operational. The a-Si:H TFT backplane based active matrix liquid crystal display was made by Japan in the mid-1980s. Constant et al. demonstrated a-Si:H based TFT circuits on polyimide substrates in 1994 [19]. The flexible polycrystalline silicon (poly-Si) based TFTs were introduced in 1997 [20, 21].

Solution processable organic semiconductors have also attracted significant interest as an alternative material for making flexible devices. It provides easy solution based deposition of active organic materials at low (room) temperature, and also allows for unconventional deposition methods [22] such as inkjet [23, 24] screen [25, 26] and microcontact printing [22, 27, 28]. These organic materials are light weight, mechanically flexible, compatible with commercially available flexible substrates. The first organic semiconductor based field effect transistor was realized in 1964 [29]. The flexible organic thin film transistor (OTFT) on polymer substrate was demonstrated in 1983 [30].
Currently, carbon nanotubes (CNTs) with their unique physical and mechanical properties are being considered as potential replacement of existing semiconducting materials for flexible electronics. Single-Walled Carbon Nanotubes (SWNTS), a one dimensional quantum wire, have gained great interest as an active channel material for flexible electronic devices due to their unique electrical, mechanical and thermal properties. Their mobility can go as high as $10^5 \text{ cm}^2/\text{Vs}$, and they have large current carrying (10^9 A/cm^2) and thermal conducting (5800 W/mK) capability, higher ON/OFF ratios ($>10^5$) and extreme mechanical flexibility [31-35]. The first single-walled carbon nanotubes field effect transistor (FET) is demonstrated in 1998 [36, 37]. SWNTs based FETs exhibit p-type behavior in the ambient environment [34] and it can be converted to n-type behavior by doping [32]. CNTs have been extensively utilized in many devices on flexible substrates such as high frequency FETs, p-n diodes, memory devices, logic circuits, etc. [38-42]. The CNTs properties and applications are discussed in details in Chapter 2.

Since then flexible electronics technology has developed drastically, and many research groups from various universities and companies such as Philips, Samsung, Readius, IBM, Motorola, and Nokia are actively working in this field. For example, Readius [43] the world’s first pocket eReader, exploits the versatility of rollable displays to merge the ‘reading friendly’ strengths of eBook readers with pocket size form factor and world wide connectivity (Figure 1.1a). In February 2008, Nokia Research Center (NRC) developed a new concept for next generation mobile devices call Nokia Morph [44]. Morph shown in Figure 1.1b is a concept that demonstrates how future mobile devices might be stretchable and flexible, allowing the user to transform their mobile
device into radically different shapes. They expect that the elements of Morph might be available to integrate into handheld devices within 7 years.

Figure 1.1: Current and future flexible devices. (a) A rollable pocket eReader by Readius, and (b) Nokia Morph concept shows future mobile devices which are stretchable and flexible.

1.3 Materials for Flexible Electronics

Flexible electronics can be realized using either transfer printing or direct fabrication methods. In the transfer printing method, devices are first fabricated utilizing conventional photolithography techniques on glass or silicon substrates, and then these devices are transferred to plastic substrates [45-48]. This approach can give high performance flexible devices but provide small coverage at high cost. In the latter approach, devices are fabricated directly on flexible substrates but more attention need to be paid on defining the processing steps to make them compatible with the plastic
substrates [3, 5-7]. Realization of complete flexible electronic structure requires mechanically flexible substrates, front and back end electronics and compatible encapsulation layers. For a typical flexible display application, the frontend electronics have materials for displays which include organic light emitting diode, liquid crystal, or electrophoretic displays. Whereas the backend electronics will be the driving circuits which is typically arrays of thin film transistors made from a-Si:H, organic semiconductor or carbon nanotubes materials. The mechanically flexible substrates, polymer gate dielectrics and encapsulation layers are discussed below.

1.3.1 Mechanically Flexible Substrates

Most of current flexible electronic devices are realized on thin glass plates, metal foil and plastic films. The mechanical flexibility can be interpreted in many ways such as bendable, conformably shaped, elastic, lightweight, non-breakable, or rollable. The glass plates of thickness of ~ 100 µm are reported to provide enough flexibility for flat panel display applications [49, 50]. Similarly, metal foil substrates less than 50-125 µm are flexible and reported in emissive or reflective display applications [51]. In this section, plastic films as a substrate material in flexible electronics will be discussed.

Fabrication of flexible devices on polymeric substrates is strictly restricted to low temperature processes. The glass temperature of plastic substrates range typically between 80 and 150 ºC and hence they are not able to handle fabrication processes that require temperatures above 150 ºC [43, 50, 52, 53]. The difficulty in controlling the shrinkage of polymer films during fabrication is also a major problem. In other words, coefficient of thermal expansion (CTE) of these polymer materials also plays a crucial
role in the flexible device fabrication [29]. During processing, flexible substrate coated wafers under goes multiple heat treatment and a small thermal mismatch stress can curve these films which eventually makes the fabrication difficult. Thermal expansion coefficients below 20 ppm / °C are favored for Si based flexible electronics. Moreover, permeability of gases and moistures through plastic films need to be considered to prevent the elongation and shrinkage of these materials over long periods of time. Polymer substrates are very attractive for flexible electronics because they are inexpensive and can provide higher flexibility. Polymeric substrates such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyimide (PI or kapton), polyethersulphone (PES), polyarylates (PAR), and polycyclic olefin (PCO) are listed as candidates for flexible substrates [29, 43, 50, 52-54]. Yet PEN, PET, and kapton have been heavily utilized for flexible electronics as they have CTE of below 20 ppm / °C. In addition, PEN, PET and PI can handle temperature of 200, 150 and 350 °C during fabrication, respectively. These films are available in sheet forms and hence require attachment to carrier wafers prior to processing. Alternately, sophisticated tools such as stamping are another method to realize devices on these substrates. The above polymeric films come in bulks sheets with a thickness of nearly 100 µm, and gases and moistures do permeate through these films over period of time. Finding simpler substrate that is compatible with micromachining, inert and mechanically strong would be beneficial to the flexible electronics field.

In this dissertation, parylene-C is explored as a flexible substrate for a CNT FET. Despite its attractive properties, parylene-C (Pa-C) has rarely been explored as a flexible substrate. Parylene-C, a derivative of Poly-Para-Xylylene [55] is a lightweight, stress-
free, optically transparent, and mechanically strong material, which is deposited at room temperature. It is also compatible with standard microfabrication techniques (e.g. it is resistant to chemicals, insoluble in common solvents such as acetone and isopropyl alcohol (IPA), etc). Furthermore, during processing, one can create Pa-C substrate on a carrier wafer, complete all fabrication processes, and peel off from the handle wafer at the end. The thickness of the parylene-C film can be well controlled down to 1 μm using commercially available parylene deposition coaters. Due to its higher tensile strength (70 MPa) and Young’s modulus (3.2 GPa) [55] parylene-C films as thin as 4 μm can be easily fabricated, and still peeled off without tearing it. In general, for a thin film, the bending rigidity of a film is proportional to the third power of its thickness [56] and is also dependent on the elastic property of the material that comprises the film. The thickness of Pa-C layer is controllable and as result the film can accommodate devices requiring different flexibility. These attractive properties make it a very promising material as a flexible substrate for CNTFETs which is detailed in Chapter 5.

1.3.2 Gate Dielectric Materials

Selection of gate dielectric material is critical for electronics especially for a transistor. The factors such as dielectric-semiconductor interface, leakage current, dielectric constant, processability, film roughness and morphology, stability, and reliability need to be carefully considered during selection of gate dielectric material. The dielectric for thin film transistors are classified into two categories called inorganic or organic (polymers) films. Inorganic dielectrics such as silicon dioxide (SiO₂), titanium dioxide (TiO₂), aluminum oxide (Al₂O₃) and tantalum dioxide (Ta₂O₅) are commonly
used in (organic and carbon nanotube) TFTs yet some drawbacks limit their use on
flexible applications [57-61]. The deposition of these materials is costly and requires
sophisticated tools. The process compatibility of inorganic dielectrics with different
flexible substrates is another concern during fabrication of these transistors. To achieve
better flexibility, the above gate dielectric materials are thinned down to tens of
nanometers but these thin films consist of defects and pinholes which lead to higher
leakage current. The thermal annealing at elevated temperature is frequently employed to
improve the quality of these thin dielectrics. However, the flexible substrates will not be
able to handle such high temperature process and it can deteriorate the film quality.
Polymer dielectrics have numerous advantageous compared to inorganic counterparts.
They are solution processed utilizing inexpensive methods such as dip coating and spin
coating which makes it compatible with different polymeric substrates. Furthermore,
polymers are flexible, possess excellent insulating properties and have very low leakage
current makes it attractive for flexible applications. These organic dielectrics create
superb interface with organic semiconductors and provide template for ordering organic
materials. Polymer gate dielectrics such as polystyrene (PS), polymethyl-methacrylate
(PMMA), poly (vinyl alcohol) PVA, poly (vinyl phenol) PVP and poly (4-methylstyrene)
have been utilized for OFETs [50, 62-66]. Polymers such as polyimide [67], SU8 [35],
and PMMA [68] have been reported as gate dielectrics using solution processed
techniques such as spin coating for flexible carbon nanotube FETs. The drawback of
employing these approaches for gate dielectrics is that they are usually cured at high
temperature which limits their applications for flexible devices made on polymeric
substrates. Moreover, these materials are not very compatible with standard micro
fabrication processing methods, and hence require sophisticated fabrication techniques (such as imprinting) to develop a complete transistor.

I have utilized parylene-C as a gate dielectric for flexible carbon nanotube based thin film transistors. Pa-C is deposited at room temperature and provides a pinhole free and conformal film, and hence it is ideal for flexible devices. Parylene-C is compatible with standard CMOS fabrication techniques for example it is resistant to chemicals, insoluble in common solvents such as acetone and isopropyl alcohol (IPA) etc. The parylene polymerization is oxygen free, and the organic carbon nanotube on organic parylene gate dielectric is likely to provide better dielectric-CNT interface. The dielectric constant of the parylene-C is 3.2 and due to its high breakdown voltage and low leakage current several organic devices [69] are made using parylene as a gate dielectric, yet applications of parylene in CNTFETs is rarely explored. Parylene-C gate dielectric for SWNT FETs is discussed in details in Chapter 4 and 5.

1.3.3 Encapsulation

Flexible electronics need to be protected from environmental contamination, detrimental gases, house hold hazardous, etc. A good encapsulant should possess following properties: high dielectric strength, high electrical resistivity, high thermal conductivity, low, conformability, low moisture absorption, solvent resistance, low thermal expansion coefficient, thermal stability and high purity [70]. Today, polymer and ceramic films are wildly used in packaging industry. Ceramic encapsulants such Si3N4, SiO2 and Al2O3 typically have superior thermal stability, highly impermeable to atmospheric gases, higher dielectric strength, higher tensile strength, higher thermal
conductivity, and lower thermal expansion coefficient comparing to polymeric films. However, ceramic films create cracks and do not provide 100% pinhole free deposition [71, 72]. Polymer encapsulants such as polyimide, parylene, epoxy and silicone are very flexible, easy to process, compatible with different polymeric substrates and conformal pinhole free coating, and hence have been extensively utilized on flexible devices [70, 72, 73]. The drawback of using polymers as a passivation layer is that the gases and moistures permeate through these films and challenges their long term stability. These problems opened door for making impermeable thin film coating as an encapsulation layer in the flexible OLED industry. A multilayer composite barrier coating consists of alternating organic/inorganic layers have been realized to improve the long term operating life of OLEDs [74, 75].

Despite their environmental sensitivity very few studies have been conducted to investigate passivation materials for CNT based devices. I have used parylene-C as an encapsulant for CNTFETs. Pa-C is a pin hole free material, and it provides uniform coating thickness over all surfaces regardless of its configuration (eg. sharp edges and holes). It is chemically inert, and has high dielectric strength and low permeability to moisture and gases. Film deposition is a stress-free (deposited at room temperature) coating, hence does not introduce any adverse effects to the encapsulated electronics. Parylene-C has traditionally been used in the medical device industry for coating implantable device [76, 77] because it is biocompatible and classified as USP class-VI implantable plastic material [78] by FDA. The thickness of the top parylene layer can be controlled from submicron to tens of microns, and hence passivation is application oriented coating where one can engineer film thickness while preserving the flexibility.
For example, thicker parylene-C (1-10 \(\mu m \)) film can be used for implantable applications where devices are exposed to body fluids with different pH levels. It has also been explored as passivation layer for organic semiconductor eg. pentacene based field effect transistors to protect them from environmental conditions such as oxygen and moisture [79, 80]. Chapter 6 and 7 discuss the parylene-C passivation for CNTFETs and their biostability.

1.4 Fabrication Technology for Flexible Electronics

Flexible electronics has gained significant interest as a pathway to large area, low cost, and mechanically bendable device applications. Flexible devices are fabricated by batch processing, roll-to-roll (web) processing or printing technology. In batch processing, flexible substrates are first attached on a rigid carrier such as glass or silicon wafers, devices are next made using standard microfabrication methods, and finally polymeric films are removed from the carrier wafer. Here, the device fabrication must be performed at low temperature to avoid cracking or curling of films, and devices should be prevented from getting damaged during peel off at the end of the process. Amorphous silicon TFT [81, 82], organic FETs [83], and carbon nanotubes and ZnO nanowires based flexible chemical sensors [84] have been fabricated utilizing this technique. The fabrication on web by roll-to-roll processing is desirable for high-throughput production. This process employs roll-to-roll photolithograph and etching tools to make device that requires few number of patterning steps [85, 86]. The web processing is heavily utilized for a roll-to-roll production of polymer solar cells [87]. Printing technology such as inkjet [23, 24] screen [25, 26] and microcontact printing [24, 53, 54] technologies
provides easy solution based deposition of active organic materials without the need for physical masks. The printing process is low cost, applicable to large area processing, compatible with flexible substrates, and can be easily adapted to high-throughput manufacturing process such as roll-to-roll printing.

In this dissertation, I have used a 10 µm thick flexible parylene-C film as a substrate. At the end of the fabrication process a dry lift off technique is employed to remove the parylene-C film from the silicon carrier wafer. Prior to deposition, I have coated the wafers with hexamethyldisilazane (HMDS) the adhesion promoter. The HMDS provides enough adhesion between the film and substrate to complete the entire fabrication process, and also facilitate easy peel off without tearing the film. Parylene-C has a tensile strength of 70 MPa and Young’s modulus of 3.2 GPa [57], and films as thin as 4 µm can be easily fabricated and still peeled off without destroying it. These attractive properties of parylene-C are discussed in details in Chapter 3, 4 and 5.

1.5 Applications of Flexible Electronics

Flexible electronics are becoming big part of our daily life because they are inexpensive, bendable and easy to process, and can be fabricated in large areas. Flexible displays is a rapidly growing field as it is a replacement of rigid glass based technology, and numerous displays including liquid crystal display (LCD) [24, 88, 89], electrophoretic display (EPD) [53, 54] and organic light emitting diode (OLED) [29, 30, 43] display on various polymeric substrates have been reported. Paper like displays [44] is attractive for e-Reader or e-paper applications. Organic semiconductor based radio frequency identification (RFID) tags have gained quite a bit of interest in the recent years
due to their low cost production [45, 47]. Flexible sensors have received enough attention for applications in biomedicine, artificial skin, artificial noses and tongues, and wearable electronics [48-50, 90]. Electroactive polymers based artificial muscles have potential applications for biologically inspired robots, animatronics and prosthetics [51, 52]. Smart textiles are another growing industry where electronic circuits are woven or integrated on to fabric [91, 92].
Chapter 2

Carbon Nanotubes

2.1 Introduction

Carbon nanotubes (CNTs), rolling up of graphene sheets into a cigar-like shape, have been considered as the potential candidate for the next generation of electronic devices due to their unique physical, electrical and mechanical properties. Their mobility can exceed 10^5 cm2/Vs$^{-1}$, and they have large current carrying (10^9 A/cm2) capability, higher ON/OFF ratios ($>10^5$) and extreme mechanical flexibility. Metallic CNTs are ideal for interconnect technology [93-96] while their high aspect ratio and semiconducting behavior are attractive for field-effect transistors [97-99], sensors [100-102] and field emitters [103, 104]. This Chapter discusses history, synthesis and general properties of carbon nanotubes, and their potential applications in nanoelectronics.

2.2 The History of Carbon Nanotubes

Carbon is the most versatile element in the periodic table which can bond with many elements and with itself. In the solid phase carbon can exist in three allotropic forms which includes graphite (the softest substances), diamond (the hardest naturally occurring substance), and buckminsterfullerene [105]. Once considered exotic, fullerenes
are nowadays commonly synthesized and used in research including buckyballs [106] carbon nanotubes [107] carbon nanobuds [108, 109] and nanofibers [110]. Fullerenes (C\textsubscript{60} buckeyball) were first discovered by Harold Kroto, Robert Curl and Rick Smalley in 1985 [106]. In 1991, Rick Smally proposed the existence of a tubular fullerene and envisioned a bucky tube that could be made by elongating a C\textsubscript{60} molecule. Kroto, Curl and Smalley were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of this class of compounds. After a discussion on the status of fullerene research at carbon-carbon composite workshop in 1990, Smalley speculated the existence of carbon nanotubes of dimensions comparable to C\textsubscript{60}. His hypothesis were later followed by an oral presentation at a fullerene workshop in August 1991 in Philadelphia by M. S. Dresselhaus on the symmetry of carbon nanotubes capped with fullerene hemispheres [111]. The real breakthrough on CNT research came with Iijima’s report of experimental evidence of the existence of multi-walled carbon nanotubes (MWNTs) using Transmission Electron Microscopy (TEM) in 1991. Two years after, both Iijima et al. [112] and Bethune et al. [113] simultaneously and independently discovered single-walled carbon nanotubes (SWNTs).

2.3 Carbon Nanotube Synthesis

Several theories have been mentioned in the literature in explaining the exact growth mechanism for nanotubes. One theory states that metal catalyst particles are floating or supported on graphite/another substrate, the catalyst particles are spherical or pear-shaped, and the deposition will take place on only one half of the surface (lower curvature side for the pear shaped particles). The carbon will diffuse along the
concentration gradient and precipitate on the opposite half, around and below the bisecting diameter. But it will not precipitate from the apex of the hemisphere and creates the hollow core structure which is the characteristic of these filaments. As described in Figure 2.1 [114], for supported metals, filaments can form either by extrusion or tip-growth. The extrusion methods also called base growth where the nanotube grows upwards from the metal particles that remain attached to the substrate. In the later case, the particles detach and move at the head of the growing nanotube. The grown nanotube can be SWNT or MWNT which depends on the size of the catalyst particles.

![Figure 2.1: Schematics of tip-growth and extrusion mechanisms for carbon filament growth](image)

Carbon nanotubes are generally produced by three main techniques which includes arc discharge, laser ablation and chemical vapor deposition methods. Arc discharge method is the easiest way to produce CNTs where carbon nanotubes self
assemble from vapor that is created by an arc discharge between two carbon electrodes with or without catalyst. The arc discharge methods generally produce large quantities of impure material, and both single and multi walled carbon nanotubes can be grown by optimizing this technique. Metal catalysts such as Fe, Co, Ni, Y or Mo are commonly used for SWNT growth and the diameter ranges from 1.2 to 1.4 nm [115, 116]. For MWNTs, there are usually no catalyst involve in the process, and the inner and outer diameter of MWNT are 1-3 nm and ~ 10 nm, respectively [117, 118]. In laser ablation technique, a high power laser (pulsed or continuous) beam is used to vaporize a graphite target in an oven that is filled with helium or argon gas at 500 mTorr and 1200 °C. When the laser beam intrudes on carbon target it forms a very hot vapor plume and then it expands and cools rapidly [119]. As the vaporized species cool, it produces a small amount of carbon which quickly condenses to form larger clusters. Pure graphite or graphite with metal catalyst such as Co, Ni, Fe or Y is widely used in this technique. Carbon nanotubes (both SWNTs and MWNTs) produced by laser ablation are purer (up to about 90 % purity) than those produced in the arc discharge process [120, 121]. The diameter of SWNTs grown by this process ranges from 1.2 nm to 1.4 nm. The chemical vapor deposition (CVD) method uses a carbon source in the gas phase (eg. methane, carbon monoxide, acetylene and etc.) to transfer the energy to the gaseous carbon molecule. CVD carbon nanotube synthesis is a two-step process consisting of a catalyst preparation step followed by a nanotube synthesis step. The catalyst is prepared by sputtering a transition metal onto a substrate and then thermally annealed to induce catalyst particle nucleation. The catalyst has a strong effect on the CNT diameter, growth rate, wall thickness, morphology and microstructure. Ni has been widely used as a pure-
metal catalyst for the growth of aligned multi-walled carbon nanotubes. Thermal annealing results in metal cluster formation on the substrate from which the nanotubes grow [122]. The temperature for the synthesis of nanotubes by CVD is generally in the range of 650 °C-900 °C [123, 124]. The low temperature CVD (under 500 °C) growths of CNTs are also reported [125, 126]. Carbon nanotubes syntheses using plasma-enhanced CVD, thermal chemical CVD and laser-assisted CVD have been reported as well [127]. The diameter of the MWNTs grown by plasma-enhanced CVD process is around 15 nm whereas the diameter of the thermally grown MWNTs depends on the catalytic film thickness. For catalytic film thickness of 13 nm the diameter varies from 30 nm to 40 nm and for the 27 nm catalytic film the diameter ranges between 100 nm and 200 nm. Alcohol catalytic chemical vapor deposition (ACCVD) is another technique used for large-scale production of high quality single wall nanotubes (SWNTs) at minimum temperature of about 550 °C [127]. This method is a low cost process where alcohols such as methanol and ethanol are evaporated on iron and cobalt metal catalyst. The diameter of the SWNTs is about 1 nm. Vapor phase growth utilizes pyrolysis or the floating catalyst method where the carbon vapor and the catalytic metal particles are both deposited in the reaction chamber without a substrate. The diameter of the carbon nanotube grown by vapor phase method is in the range of 2-4 nm for SWNTs and 70 nm-100 nm for MWNTs [122].

2.4 Structure and Properties

A SWNT can be conceptualized as a hollow cylinder in the shape of cigar formed by rolling up of a single graphene sheet. The way the graphene sheet is rolled determines
the fundamental properties of the tube, which can be described by looking into a graphene sheet. The unit cell of a nanotube (OAB’B) is shown in Figure 2.2 and it can be specified mathematically in terms of a chiral vector C_h [128]:

$$C_h = na_1 + ma_2 \equiv (n, m)$$

![Figure 2.2: The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The chiral vector $C_h = na_1 + ma_2 \equiv (n, m)$ is defined on the honeycomb lattice by unit vectors a_1 and a_2 and the chiral angle θ is defined with respect to the zigzag axis [128].](image)

The chiral vector C_h is defined on the honeycomb lattice of carbon atoms by unit vectors a_1 and a_2 and the chiral angle θ between C_h and the so-called zigzag-direction $(n,0)$ on the graphite lattice. The lattice vector $T = OB$ is the basis translation vector of the 1D tubule unit cell perpendicular to C_h. The rotation angle ψ and the translation τ constitute the basic symmetry operation $R = (\psi/\tau)$ for the carbon nanotubes. To form a (n,m)-nanotube we simply have to superimpose the two ends OA along the vector C_h. As shown in Figure 2.3, the possible vectors specified by the pairs of integers (n,m) for
general carbon nanotubules are leading to zigzag (n,0), armchair (n,n) or chiral (n,m) tubules. For instance, the armchair (Figure 2.3a) is formed when the bisecting C_{60} molecule is normal to one of the five-fold axis (θ = 30°) direction. A zig-zag nanotube is formed (Figure 2.3b) when a C_{60} is divided normal to one of the threefold axes (chiral angle θ = 0°). A large number of carbon nanotubes have structures between the tube axis of (0° < θ < 30°C), and they are called chiral nanotube which exhibit a mirror plane normal to the tubule axis.

![Figure 2.3: A schematic theoretical model for a single-walled carbon tube with the tube zaxis OB normal to: (a) the θ = 30° direction (armchair tube) (b) the θ = 0° direction (a zigzag tube), and (c) a general direction B with 0< θ <30 (chiral tube) [128].](image)

Carbon nanotubes are being considered as promising material for future nanoelectronic due to their small size and unique properties. The electronic, optical, mechanical and chemical, and thermal properties of CNTs are discussed in the next section.
2.4.1 Electronic Properties

Carbon nanotubes based devices have been the subject of intense research since discovered by Iijima. The electronic properties of CNTs have been studied both theoretically and experimentally by many research groups [129-133]. As grown one third of CNTs are metallic and two third is semiconductor, and this condition is derived based on the band structure of a two-dimensional graphite sheet and periodic boundary conditions along the circumference direction. The electronic properties of a nanotube derived from the one dimensional energy dispersion relation of a graphite sheet with the wave vectors \((k_x, k_y)\) is [127]:

\[
E(k_x, k_y) = \pm \gamma \left(1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)\right)^{1/2}
\]

(2-2)

where \(\gamma\) is the nearest neighbor-hopping parameter and \(a\) is lattice constant. When the graphene sheet is rolled up to form a nanotube, a periodic boundary condition is imposed along the tube circumference or \(C\) direction in which the condition quantizes the two-dimensional wave vector \(\mathbf{k} = (k_x, k_y)\) along this direction. The \(\mathbf{k}\) satisfying \(k \cdot C = 2\pi q\) is allowed where \(q\) is an integer and it leads to the \((n - m) = 3q\) as the condition for metallic conductance [127]. Accordingly, it is suggested that one third of the carbon nanotubes are metallic and two thirds are semiconductor.

The Figure 2.4 illustrates the extreme sensitivity of nanotube electronic structures to chirality of nanotubes [134]. For \((m,m)\) arm-chair tubes (Figure 2.4a), there are always states crossing the corner points of the first Brillouin zone suggesting that arm-chair tubes should always be metallic. For \((m, n)\) nanotubes with \(m - n \not\equiv 3n\) where \(n\) is an integer, the
electronic states (lines) miss the corner points (Figure 2.4c and d) and the nanotubes are semiconducting. For m-n =3n, certain electronic states of the nanotube land on the corner points of the first Broulloin zone (Figure 2.4b). These types of tubes would be semimetals but become small-gap due to a curvature induced orbital rehybridization effect.

For metallic carbon nanotubes, it has been predicted to conduct current ballistically without dissipating heat. For a single conduction channel with 100% transparent contacts, the resistance is a universal constant, also known as ballistic conduction. Ballistic conductor has crystalline properties which allow electrons to flow through the material without collisions. That is, CNT is a ballistic conductor in the absence of electron scattering. The conductance for a SWNT/MWNT is given by $G = G_0 M = \left(2 \frac{e^2}{h}\right) M$, where $G_0 = \left(2 \frac{e^2}{h}\right) = (12.9 \text{ K}\Omega)^{-1}$ is quantized conductance and M is an apparent number of conducting channels including electron-electron coupling and intertube coupling effects in addition to intrinsic channels [127]. For a perfect SWNT, M is equal to 2. The experimentally measured conductance is much lower than the quantized value with the measured resistance for a single SWNT is $\sim 10 \text{ K}\Omega$ [135] as compared to the perfect value of 6.45 KΩ. This is because M is determined not only by the intrinsic properties of a CNT itself, but also by the intertube coupling, the scatters from defects, impurities, structural distortions, coupling with substrate and contacts problems.

The band gap for semiconducting carbon nanotubes scales inversely with the diameter of the tube, $E_g = 0.84eV/d \text{ [nm]}$ [105]. The conductance of semiconducting nanotubes is determined on the exact position of the Fermi level with respect to the band edges. Furthermore, the chemical or electrostatic doping can be used to change the
conductivity. Highly doped semiconducting tubes can have conductance value almost as good as metallic tubes.

Figure 2.4: Schematic structures of SWNTs and how they determine the electronic properties of the nanotubes. (a) A (10,10) arm-chair nanotube. Bottom panel: the hexagon represents the first Broulloin zone of a graphene sheet in reciprocal space. The vertical lines represent the electronic states of the nanotube. The center-line crosses two corners of the hexagon, resulting in a metallic nanotube. (b) A (12, 0) zigzag nanotube. The electronic states cross the hexagon corners, but a small band gap can develop due to the curvature of the nanotube. (c) The (14, 0) zigzag tube is semiconducting because the states on the vertical lines miss the corner points of the hexagon. (d) A (7, 16) tube is semiconducting [134].

2.4.2 Optical Properties

For optical and optoelectronic applications, defect-free SWNTs are preferred because it offers not only direct band gap, but also well-defined band and subband structure. The optical and optoelectronic properties of a SWNT can be understood from its band structure or electronic density of states (DOS). Wildoer et al. has directly
observed DOS of individual SWNTs (for both metallic and semiconducting tubes) by scanning tunneling microscopy (STM) and has shown a good agreement with the theoretical prediction of tight-binding zone-folding calculation [136]. Rao et al. have shown diameter-selective resonance Raman spectra of SWNTs with laser excitation wavelengths in the range from 514.5 nm to 1320 nm [137]. Moreover, CNTs are also very photosensitive [138-140], and Fujiwara et al. observed a slow response on the order of seconds when nanotube was illuminated with UV light [139].

2.4.3 Mechanical Properties

Table 2.1 summarizes calculated Young’s modulus and tensile strength for SWNT and bundle and MWNT with comparison with graphite and steel [127, 141]. As compared to other materials, carbon nanotubes are the stiffest (Young’s modulus) and strongest (Yield strength) material. A SWNT has a Young’s modulus of 1.2 TPa which is nearly five times of that of a steel. The tensile strength is more than hundred times higher than steel, and can tolerate large strains before mechanical failure. These theoretical calculations appear to agree with that of experimental values. From experiments, the Young’s modulus of SWNT with diameter of 1-2 nm is about 1 TPa whereas the Young’s modulus for MWNT is higher than a SWNT and ranges between 1.1 and 1.3 TPa [142, 143]. The experimental results of MWNT show inconsistency because they contain different amount of defects from different growth methods [127].
Carbon nanotubes can handle large strains and are quite flexible during bending and can return to their initial shape after bending [144]. The mechanical deformations can change the band structure due to the dependence of the electronic properties on the structure of nanotubes which results in electromechanical effects. For example, piezoresistance and electrostatic actuation together with the mechanical properties are utilized for making nanotube-based mechanical sensors, actuators, oscillators or electromechanical switches. Tombler et al. showed that when CNT is strained with the tip of an atomic force microscope (AFM) their band structure is dramatically altered by mechanical strain, cause changes in the electrical properties, and make the nanotube more or less conductive (piezoresistance) depending on their chirality [145]. This piezoresistance effect can be used for sensing applications. Due to attractive mechanical and electromechanical properties, such as stiffness, strength, piezoresistance and the capability of electrostatic actuation, carbon nanotubes offer promising opportunities for electromechanical devices. Li et al. [146] have demonstrated that a SWNT could be used as a tip for probing biomolecules in solution using AFM. Nanotero is currently developing carbon nanotube based electromechanical switches [147].

<table>
<thead>
<tr>
<th>Materials</th>
<th>Young’s Modulus (GPa)</th>
<th>Tensile Strength (GPa)</th>
<th>Density (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWNT</td>
<td>1200</td>
<td>~150</td>
<td>2.6</td>
</tr>
<tr>
<td>SWNT</td>
<td>1054</td>
<td>75</td>
<td>1.3</td>
</tr>
<tr>
<td>SWNT bundle</td>
<td>563</td>
<td>~150</td>
<td>1.3</td>
</tr>
<tr>
<td>Graphite (in-plane)</td>
<td>350</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Steel</td>
<td>208</td>
<td>0.4</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Table 2.1 Mechanical Properties of Carbon Nanotubes
2.4.4 Chemical Properties

Due to their small size, large surface to volume ratio and σ-π rehybridization carbon nanotubes are very sensitive to chemical or environmental interactions, and have become attractive for chemical and biological sensors. The chemical properties such as opening, wetting, filling, adsorption and doping can be used for chemical and biological separation, purification, sensing and electronics. The nanotube ends are more reactive than the sidewall because of the greater curvature, and several groups have reported opening nanotube ends utilizing vapor phase oxidation, plasma etching and chemical reactions (HNO_3) [148, 149]. Once the ends are terminated the interior can be easily filled with an inorganic phase [150]. To build CNTs based logic devices it requires both ‘p’ and ‘n’ types nanotubes. The chemical doping is one of the means to do such conversions, and Liu et al. demonstrated a CMOS inverter with normal p-type and potassium doped n-type nanotube transistors [151]. Molecular adsorption also provides a simple way to change the nanotubes into p-type with oxygen [152] or water adsorption or n-type with C_6H_{12} [153].

2.4.5 Thermal Properties

Carbon nanotube are expected to have an extraordinary heat capacity and thermal conductivity at room and elevated temperatures similar to Graphite and diamond, however it has an unusual behavior at low temperatures due to the effects of phonon quantization [127]. For example, the heat relation of a SWNT, SWNT bundle, and MWNT is about 700 mJ/gK when temperature (T) is more 100 K. When $T < 100$ K, heat
capacity is 0.3 for a SWNT, 0 for SWNT bundle, and 2-10 for MWNT [154]. Berber et al. [155] has reported an unusually high thermal conductivity of 6000 W/mK on an isolated SWNT while P. Kim [156] has measured a conductivity of 3000 W/mK on a single MWNT. The thermal conductivity of SWNTs depends not only on tube length and diameter, temperature and isotope impurity but also on its chirality [157]. Zhang et al.’s model shows a chirality dependence on the thermal conductivity in which the zigzag nanotube has a maximum conductivity and the chiral nanotube has a minimum value [157].

2.5 Carbon Nanotube Assembly

To realize CNT based devices they have to be placed in proper position and desired formation. Several techniques have been reported to manipulate and deposit carbon nanotubes in a preferred location. The chemical vapor deposition (CVD) based nanotube growth process uses catalysts deposited either on a buried electrode [158] or directly on metal electrodes [95]. However, this CVD-based approach is limited by high processing temperatures (>500 °C) and nonselective to nanotube types [42] (metallic or semiconducting). Self-assembled monolayer (SAM) is an attractive alternative approach to assemble nanomaterials on predefined patterns [159]. SAMs are molecular assemblies that form spontaneously by immersing surface functionalized substrate into carbon nanotube solutions. CNTs will be attracted towards the functional region and self assemble to form a predesigned structure [160]. Atomic force microscope (AFM) based single carbon nanotube manipulation is also reported [161]. These methods have low throughput and are not suitable for the production environment. Other solution based
deposition methods such as spray coating [162, 163], dip coating [164, 165], drop casting [166] and transfer printing [167] have also been reported for carbon nanotube network assembly. Electrophoretic deposition (EPD) of CNTs is also developed for manipulation of CNTs [168]. In EPD, charged particles dispersed in a solvent move towards an electrode under an applied electric field. In this dissertation, I have used dielectrophoretic (DEP) assembly technique to deposit nanotubes between planar and three dimensional electrodes. DEP, coined by H. A. Pohl [169], refers to the force exerted on the induced dipole moment of small nanomaterials suspended in insulating dielectric liquids by a nonuniform AC or DC electric field. The direction of the DEP force depends on the electrical properties of both the nanomaterials and the suspending medium, which is given in Eqns. (1) and (2) for the case of AC signals [170]:

\[
\langle F_{DEP}(t) \rangle = 2\pi ab^2 \varepsilon_m \text{Re}(K) \|	ext{E}_{rms}\|^2
\]

\[
K = \frac{\varepsilon_p^* - \varepsilon_m^*}{3[\varepsilon_m^* + (\varepsilon_p^* - \varepsilon_m^*)L_f]}
\]

where \(E_{rms}\) is the electrical field, \(a\) and \(b\) are the length and radius of the nanomaterials, and \(\varepsilon_m\) and \(\varepsilon_p\) represent permittivity of the nanomaterials and the medium, respectively. \(K\), Clausius-Mosotti factor, shows the interrelationship between the frequency-dependent properties of the nanomaterials and the medium. When Re(\(K\)) is greater than 0, the assembly process is achieved through a positive dielectrophoretic force (PDEP) otherwise it is achieved through a negative dielectrophoretic force (NDEP). For PDEP assembly, nanomaterials are attracted to regions where the electric field strength is highest. Alternately, for NDEP assembly, the nanomaterials are attracted to the regions of lowest
field strength. Among the solution based methods, dielectrophoretic assembly has numerous advantages. It allows CNTs to deposit in desired locations with alignment [171]. Moreover, DEP can also provide real time control over the density of assembly [172] while the current induced oxidation eliminates or minimizes the number of metallic nanotubes in the channel [173]. Hence, I have utilized dielectrophoretic assembly to deposit SWNTs between 2D and 3D dimensional electrodes.

2.6 Applications of CNTs

Carbon nanotubes have unique properties which make them a promising material for a broad range of applications. Due to its small size CNT can be utilized as a tip for scanning probe technology eg. scanning probe microscopy (SPM), scanning-force microscopy (SFM), etc. [174, 175]. The high current carrying capacity of metallic nanotubes indicates potential applications in interconnects [94]. Carbon nanotubes possess excellent field emission characteristic, and CNTs based field emitter displays (FED) and cold cathodes x-ray tubes have been reported [103, 104]. Semiconductor carbon nanotubes are used for p-n diodes [39], field effect transistors (FETs) [97], and logic devices [176-178]. Metallic carbon nanotubes based single electron tunneling transistors are also reported [179, 180]. Carbon nanotubes have extremely high surface to volume ratio and their properties can be tailored with different functional groups for specific applications which enabled CNTs based chemical, gas and thermal sensors, and biosensors [101, 181-184].
Chapter 3

Parylene-C: Deposition, Surface Characterization and Dry Etching

3.1 Introduction

Parylene-C is a lightweight, stress-free, optically transparent, and mechanically strong material, which is deposited at room temperature. It is also compatible with standard microfabrication techniques. Parylene-C is a pin hole free material, and it provides uniform coating thickness over all surfaces regardless of its configuration. In this Chapter, parylene-C properties, deposition, surface characterization and dry etching are discussed. First, parylene-C deposition is characterized and a deposition rate of ~ 0.5 µm per grams of dimer is obtained. The film thickness up to 20 µm is relatively flexible and will conform readily to curved surfaces. Surface properties of parylene-C are next studied. As-deposited parylene-C displays hydrophobic property with a contact angle of ~98 °C. Furthermore, the parylene surface can be easily converted to a hydrophilic surface with a short O₂ plasma treatment. It is interesting to note that a hydrophilic parylene surface can also be converted back to hydrophobic surface, if required. Tricholorosilane, an anti-stiction coater, is evaporated using an oven under vacuum at an elevated temperature (100-130°C) to do such conversion. Submersing the parylene sheet
(treated and untreated) into DI water for 3 days does not change the surface properties significantly. However, the air stability study reveals that the hydrophilic parylene film recovers its initial surface ($\theta=98^\circ$) after 57 hours. Finally, a low temperature parylene etch process with multiple recipes with fast etch rates and anisotropic profiles (>8:1) is developed.

3.2 Parylene and Its Applications

3.2.1 Properties and Characteristics of Parylene

Parylene, a white granular powder, is generic name for a class of polymers called Poly-Para-Xylylene. Parylene is first discovered by Michael Mojzesz Swarc at the University of Manchester in England in 1947, and it was commercialized in 1965 [55]. Parylene forms a light weight and stress-free (deposited at room temperature) coating, hence does not introduce any adverse effects to the encapsulated electronics. It has a low coefficient of friction and used often as a dry film lubricant. Parylene is a transparent, inert and conformal coating, does not produce any out-gassing, and has a very low permeability to moisture and gases.

Parylene as a film is extremely resistant to fungus and bacteria, radiation, acid and base, and it is insoluble in solvents. It has high tensile and yield strength, dielectric strength and wide temperature range (see Appendix A-2) which can be used to fabricate mechanically robust microstructures. Parylene is widely utilized in electronic assemblies, sensors, medical devices, aerospace and avionics equipments, because it possesses attractive physical, chemical, mechanical and electrical properties compared with other
polymeric materials. In addition, Parylene is biocompatible and FDA approved class VI implantable plastic material.

There are more than 20 variants of parylene, yet only 4 of them are widely known which include parylene N, parylene C, parylene D and parylene Nova HT or AF-4. Each one of these polymers has unique properties which make them suitable for special applications with their chemistries shown in Figure 3.1 below.

Figure 3.1: Chemical structure of different parylene types. (a) Parylene N, (b) Parylene C has one Cl atom in the benzene ring, (c) Parylene D has two Cl atoms in the benzene ring and (d) Parylene Nova HT has F atoms in the benzene ring.

Parylene-N is the smallest and the most active molecule compared to other variants. Because of its high modular activity in monomar state during the deposition process, parylene-N has the greatest penetrating power and is able to coat deep recesses and blind holes. Among the four parylene variants, parylene-N has the lowest coefficient of friction, the low elongation, the lowest (electrical) dissipation factor, and the highest
dielectric strength and a dielectric constant that is independent of frequency. These desirable properties of parylene-N makes it well suited for applications that require high penetration power, dry film lubricant ability, complete pinhole-free coverage and as an insulator for high frequency applications.

The chemical structure of parylene C, a single chlorine atom on the benzene ring, creates desirable properties for this variant among all parylenes. Parylene-C has low permeability to moisture and corrosive gases, and has a faster rate of deposition than parylene N. However, it is not suitable for high penetration application and has a low dielectric strength compared to parylene-N. Parylene-C is also very cost effective, and it is highly recommended for conformal coating applications that require thicker parylene films. In general, parylene-C is used for the most of the commercial applications (except for higher penetration and dry film lubricant applications) because it possesses the strongest overall performance of all parylene variants.

Parylene-D, the largest molecule, has two chlorine atoms on the benzene ring. It has the greatest thermal stability, the lowest penetration ability, the hardest surface and the least elongation of all four parylene. Parylene-D is desirable for applications that require physical toughness, thermal stability and chemical resistance, because it possesses excellent physical and electrical properties at higher temperature.

Parylene Nova HT (Parylene AF-4), the newest variant of all parylenes, has fluorine atoms in the benzene ring. As a result, it has higher resistance to elevated temperatures and ultraviolet radiations, and it also has a reduced dielectric constant.
These properties make parylene Nova HT well suited for avionic and semiconductor applications.

Other properties of the parylene variants are detailed in the Appendix A-2. The recent book by Fortin and Lu [55] is the only and the best text that provides detailed information about parylenes.

3.2.2 Applications of Parylene-C

Parylene-C has traditionally been used in the medical device industry for coating implantable devices [55, 134, 185] and in the electronics industry as an insulating [186, 187] and bonding [188] material. In the Micro Electro Mechanical Systems (MEMS) community, it has been utilized as a structural layer in many device applications, for instance; micro check valve [189], actuators [190, 191], sensors [192], bolometer [193] etc. Furthermore, it has also been used in the biomedical engineering research for a wide variety of applications, from 3-dimensional (3D) neurocages [194], selective patterning of biomolecules [195, 196] to microfluidic channels [114].

3.3 Results and Discussion

3.3.1 Parylene Deposition Process

Parylene is widely utilized in the medical and electronics industries as a conformal pin-hole free coating. Due to its high mechanical strength it is also being considered as a substrate for Flextronics applications [197]. Based on our experiments, parylene film of thickness up to 20 μm are relatively flexible and will conform readily to
Polymerizations of polymer materials are typically done in solution form or gas/vapor phase form with/without the assistance of plasma [132]. Parylene deposition is a chemical vapor deposition (CVD) process, which is done at 25 mTorr and at room temperature (25 °C). Parylene deposition process has three main stages. The first stage is vaporization process, where a solid parylene dimer is vaporized at a temperature of 175°C. The second stage is the pyrolysis process, during which vaporized parylene gas enters into the pyrolysis chamber, and the parylene gas is decomposed into the parylene monomer at a temperature of 690°C. The last stage is the deposition process where the parylene monomers move slowly into the deposition chamber and get adsorbed on the substrate surface and polymerize. The steps of parylene deposition are illustrated in Figure 3.2. During the polymerization process, the monomer in the deposition chamber is first adsorbed on the substrate, then surface migration and bulk diffusion of monomers take place, finally the chemical reaction between the monomers forms the film. The mean free path of parylene monomer in the deposition chamber is in the order of 0.1 cm during this process which results in a conformal deposition. Since the polymerization process occurs at room temperature, the deposited parylene films are relatively stress free.

\[
\begin{align*}
\text{(Dimer)} & \quad \rightarrow \quad \text{(Monomer)} & \quad \rightarrow \quad \left(\text{CH}_2 \text{CH} = \text{CH} \text{CH}_2 \right)_n \\
\end{align*}
\]
The deposition rate of the parylene film was calculated based on the amount of parylene dimer (in grams) utilized. In my experiments, a specialty coating 2010 Labcoater 2 (PDS 2010) parylene deposition system is utilized. The details of PDS 2010 and its operating procedures are given in Appendix A-1. As illustrated in Figure 3.3, a consistent deposition rate of \(~0.5\ \mu\text{m/gram}\) was measured throughout multiple experiments. To measure the parylene deposition rate, multiple parylene depositions with different thicknesses ranging from \(1\mu\text{m}\) to \(40\mu\text{m}\) was performed. In order to measure the height of the deposited films, first I deposited and patterned an aluminum hard mask on the film. After etching the parylene in an inductively coupled plasma tool, next I measured the height of the parylene films using a Dektak surface profilometer (Dektak 3ST, Sloan Technology) and the Zygo 3D optical surface profilometer (ZYGO NuView 6000).

Figure 3.2: The parylene deposition sequence where the parylene dimer is decomposed into monomer then polymerization takes places.

Figure 3.3: Parylene-C deposition rate. The measured parylene-C thickness is plotted against amount of dimer consumed.
3.3.2 Surface Properties of Parylene-C

As-deposited parylene-C, similar to PDMS, displays hydrophobic property with a contact angle of ~98 °C (Figure 3.4). Through experimentation, I have found out that the hydrophobic parylene surface seals extremely well to other hydrophobic surfaces such as PDMS, and a hydrophilic surface does not adhere well to other surfaces. The hydrophobic side of parylene sheet was placed on a silicon wafer and inspected under FESEM microscope to verify its sealing property. As seen in Figure 3.5, hydrophobic parylene-C substrate sealed well onto a silicon surface. Moreover, the parylene surface can be easily converted to a hydrophilic surface with a short O₂ plasma treatment (Figure 3.6). It is interesting to note that a hydrophilic parylene surface can also be converted back to hydrophobic surface, if required. Tricholorosilane, an anti-stiction coater, was evaporated using an oven under vacuum at an elevated temperature (100-130°C) to do such conversion. As displayed in Figure 3.7, anti-stiction film coated parylene-C represents a super hydrophobic surface (contact angle 116°). The operating procedure to perform an anti-stiction coating is described in the Appendix A-4.

![Figure 3.4: Contact angle measurements from the as-deposited parylene-C surface.](image)
I have also characterized the contact angle and the stability of as-deposited-parylene sheets in aqueous environments over extended periods of time (24-72 hours). Submersing the parylene sheet into DI water for 3 days (which may be the case for multiple rinsing experiments) did not change the surface properties significantly (Figure 3.8). Plasma treated parylene becomes hydrophilic and stays hydrophilic for many days. Similar to the hydrophobic stability test, I tested the hydrophilic parylene surface over 72 hours in DI water and the surface remained hydrophilic for the duration of this test (Figure 3.9). The fact that hydrophilic rendered parylene surface remains hydrophilic up to 3 days, unlike PDMS, makes it more amenable for many biomedical applications. Many kinds of adherent types of cells require proteins to attach to a surface. Furthermore, proteins tend to stick to hydrophilic surfaces better than the hydrophobic surfaces; hence hydrophilic surfaces are much preferred for cell culturing applications. I have next studied the stability of hydrophilic parylene film in air and compared it to that of hydrophilic PDMS film over 72 hours. In this experiment, first parylene and PDMS films are treated in oxygen plasma for 30 seconds (utilizing ICP-RIE machine under following conditions: RF bias power=100W, Source power=150W, O$_2$ flow=50 sccm, Ar flow=20 sccm, Pressure=20mTorr and Temperature=25$^\circ$C). Then treated films were left in the air (inside the clean room) and the contact angle was measured every 15 minutes for 72 hours. Parylene turned out to have an excellent stability in air comparing to its counterpart. As fabricated PDMS has a water contact angle of 108$^\circ$ and it became hydrophilic after oxygen plasma treatment ($\theta=8^\circ$). Over time (at room temperature, in air) it slowly recovers its initial hydrophobic state ($\theta=108^\circ$) in 3.5 hours. Whereas hydrophilic parylene film recovers its initial surface ($\theta=98^\circ$) after 57 hours. The surface
property of treated and untreated parylene-C is very stable in air and DI water for at least 57 hours which makes it an attractive flexible material for making devices using standard microfabrication techniques.

Figure 3.5: (a) FESEM image of 10 µm thick Parylene film sealed on to a silicon substrate and (b) magnified view of (a).

Figure 3.6: Contact angle data from parylene surface after O₂ plasma treatment.

Aluminum is used as the hard mask while etching parylene in the ICP tool and to improve its adhesion to the parylene surface I routinely roughen (recipe is included in the
Appendix A-5) the parylene surface prior to depositing the Al metal which makes the top parylene surface hydrophilic. Through our experiments, we have found that as-deposited hydrophobic parylene surface attaches well to other hydrophobic surfaces (such as PDMS, polystyrene). However, it does not adhere well to hydrophilic surfaces such as glass. Here the anti-stiction coating can be utilized to make the top side of the parylene stencil hydrophobic.

Figure 3.7: Tricholorosilane (anti-stiction coater) treated parylene surface.

Figure 3.8: Contact angle measurements from as-deposited parylene surface soaked in an aqueous environment for 3 days.
3.3.3 Plasma Etching of Parylene-C

To characterize the parylene-C etch process, first, a 10-20 μm thick parylene is deposited on a silicon wafer (PDS2010, Specialty Coating Systems, Indianapolis, IN). Then, I treat the as-deposited parylene surface with a brief oxygen plasma in the ICP reactor using the roughen recipe. Next, a 2000Å thick aluminum hard mask is deposited using sputter deposition. After patterning the Al hard mask, the exposed parylene is etched in an ICP etcher (Plasmatherm 790). After the ICP etch, the Al hard mask is stripped. Parylene dry etching process flow is listed in the Appendix A-3. As a side note, prior to parylene deposition, I frequently use HMDS as the adhesion promoter, whereas using the conventional adhesion promoter for parylene-C (A-174 Silane) tends to create a very strong adhesion between the film and the substrate. I have used both 10 μm and 20 μm thick parylene layers, and both work well and both are flexible, yet 20 μm thick film is less flexible comparing to that of 10 μm.

![Figure 3.9: Contact angle measurement from treated parylene surface (hydrophilic) in aqueous environments for 3 days.](image-url)
For patterns with large dimensions (in excess of 200-300 μm) that do not require fine (2-3 μm) resolution, I fabricate the parylene micropatterns with a room temperature ICP etch since lateral etching is not a major concern. Furthermore, while fabricating patterns with fine features (< 10 μm), one requires an anisotropic etch and hence, I have developed a novel high aspect ratio parylene etch process which is detailed in the next section.

Parylene has been gaining popularity as a unique low temperature material for many biomedical and non-biomedical applications [198, 199]. One of the current needs for the parylene micromachining community is a high aspect ratio etching process. Meng and coworkers [132] utilizing a DRIE tool, obtained aspect ratios of up to 3:1. Moreover to create patterns with fine features, one requires higher aspect ratios. It is possible to reduce the isotropy of a reactive ion etch process by reducing the etch temperature which is commonly done by etching silicon at low temperatures (~ -100°C). Moreover, for etching polymers such as parylene-C, reducing the etch temperature down to 5°C serves a similar purpose. Using an ICP reactor (Plasmatherm 790), I developed multiple recipes

<table>
<thead>
<tr>
<th>Etch #</th>
<th>Etch rate (μm/min)</th>
<th>RF Bias Power (W)</th>
<th>Source Power (W)</th>
<th>O₂ (sccm)</th>
<th>Ar (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.7</td>
<td>250</td>
<td>400</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1.0</td>
<td>100</td>
<td>400</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3.1: ICP etch recipes for low temperature (5°C) and low pressure (5mTorr) parylene-C etching.
(Table 3.1) with fast etch rates and anisotropic profiles (>8:1). The parylene film shown in Figure 3.10(a) with a thickness of 55µm is etched with the recipe “b” in Table 3.1 and the one shown in Figure 3.10(b) with a thickness of 10µm is etched with recipe “c” in Table 3.1 and they both display almost vertical sidewalls. I was able to etch a 55 µm thick parylene film through an opening of 6 µm which is equivalent to an aspect ratio of about 9:1. Aluminum is used as the hard mask during ICP etching which worked well, yet the fact that Al gets sputtered during etching and creates residue as seen in Figure 3.10(b). This problem can be avoided by utilizing Ni hard mask to etch thicker parylene films (> 5 µm) whereas the photoresist can be employed as a protective layer for thin (< 5 µm) parylene.

![Figure 3.10: Anisotropic profiles of (a) 55µm thick parylene and (b) 10µm thick parylene.](image)

In this chapter, characterization of parylene-C deposition, surface properties, and dry etching process is summarized. The deposition rate of parylene is ~0.5 µm per gram, and the film thickness up to 20µm is relatively flexible. As-deposited parylene-C displays hydrophobic property with a contact angle of ~98 ºC. The parylene surface can
be easily converted to a hydrophilic surface by short O\textsubscript{2} plasma treatment. Furthermore, a hydrophilic parylene surface can be converted back to hydrophobic surface with a self assembled monolayer (SAM) coating. Submersing the parylene sheet (treated and untreated) into DI water for 3 days does not change the surface properties significantly. However, the air stability study reveals that the hydrophilic parylene film recovers its initial surface (θ=98º) after 57 hours. Finally, A low temperature (5 °C) high aspect ratio (>8:1) parylene etch process is also developed to fabricate the fine structures with anisotropic profiles.
Chapter 4

Parylene-C Dielectric for Carbon Nanotube Field Effect Transistors

4.1 Introduction

Selection and design of gate dielectric material is critical for electronics especially for a transistor. The gate dielectric is an insulating material that separates the active semiconductor channel from the (top or bottom) gate electrode. The factors such as dielectric-semiconductor interface, leakage current, dielectric constant, processability, stability and reliability need to be carefully considered during selection of gate dielectric material. Both inorganic and polymer gate dielectric materials have been used for thin film transistors. Inorganic dielectrics such as silicon dioxide (SiO$_2$), titanium dioxide (TiO$_2$), aluminum oxide (Al$_2$O$_3$) and tantalum dioxide (Ta$_2$O$_5$) are commonly used in flexible organic and CNT transistors [57-61] yet there are still some drawbacks. The deposition of these materials requires costly tools (eg. ALD deposition of Al$_2$O$_3$) and they are not process compatible with different polymeric substrates. Inorganic gate dielectric materials are usually deposited in few nanometers to achieve better flexibility. Hence, it forms defects and pinholes in the material which lead to higher leakage current. The thermal annealing at elevated temperature is frequently employed to improve the quality
of these thin dielectrics. Flexible substrates cannot handle high temperature process and it can deteriorate the film quality. Polymer dielectrics are heavily utilized in flexible electronics because they are easy and inexpensive to process, and compatible with active channel materials (organic semiconductors and CNTs) and metal electrodes while maintaining flexibility. Furthermore, they possess excellent insulating properties and have very low leakage current makes it attractive for flexible applications. These organic dielectrics create superb interface with organic semiconductors and provide template for ordering organic materials. Organic FETs utilizing polymer dielectrics such as polystyrene (PS), polymethyl-methacrylate (PMMA), poly (vinyl alcohol) PVA, poly (vinyl phenol) PVP and poly (4-methylstyrene) have been reported [50, 62-66]. Polymeric materials such as polyimide [67], SU8 [35], and PMMA [68] have been reported as gate dielectrics using solution processed techniques such as spin coating for flexible carbon nanotube FETs. The drawback of employing these approaches for gate dielectrics is that they are usually cured at high temperature which limits their applications for flexible devices made on polymeric substrates. Moreover, these materials are not very compatible with standard micro fabrication processing methods, and hence require sophisticated fabrication techniques (such as imprinting) to develop a complete transistor. Parylene-C is deposited at room temperature and provides a pinhole free and conformal film, and hence it is ideal for flexible devices. Parylene-C is compatible with standard CMOS fabrication techniques for example it is resistant to chemicals, insoluble in common solvents such as acetone and isopropyl alcohol (IPA) etc. The parylene polymerization is oxygen free, and the organic carbon nanotube on to organic parylene gate dielectric is likely to provide better dielectric-CNT interface. The
dielectric constant of the parylene-C is 3.2 and due to its high breakdown voltage and low leakage current several organic devices [69, 199] are made using parylene as a gate dielectric, yet applications of parylene in CNTFETs is rarely explored. Accordingly, in my dissertation, I have used parylene-C gate dielectric for carbon nanotube transistors.

Carbon nanotube solution contains both metallic and semiconducting nanotubes, and an electrical breakdown of metallic tubes is needed to achieve high performance FETs. During current induced electrical breakdown, drain-source voltage is usually ramped up to a higher value at a higher gate voltage causes burning of metallic tubes. Furthermore, the low voltage operation (below 5 volts) of flexible CNTFETs is essential for implantable device applications. One of the easiest ways to achieve low threshold voltage transistor is by thinning down the gate dielectric material. Hence, there is a need to study the electrical stability of thin (micron and submicron) parylene-C dielectric film before developing all-parylene based carbon nanotube transistors. In this chapter, the adhesion and reliability of parylene-C dielectric material was evaluated using metal-insulator-metal (MIM) capacitor structure under the influence of constant DC stress voltage (CVS). First, the percentage of failure between untreated and silane A-174 adhesion promoter coated parylene MIM capacitors was studied at different stress voltage. Next, the time dependent dielectric breakdown (TDDB) of 1 µm parylene film was characterized as a function of applied voltage. Finally, TDDB of parylene based MIM devices was evaluated as function of dielectric thickness and applied voltage. These results indicated that the 130 nm, 330 nm, 560 nm and 1100 nm thick parylene-C dielectric are pinhole free, and can be utilized for low voltage and high performance parylene-C packaged CNTFETs.
The metal–insulator–metal capacitor structure is utilized to evaluate the dielectric breakdown of parylene-C film (Figure 4.1). In fabrication, first the bottom electrode (5 nm/150 nm of Cr/Au) was formed by sputter deposition on an oxidized (500 nm) silicon wafer. A 1 µm parylene-C dielectric material was next deposited on the wafer using PDS 2010 specialty coating system. Silane A-174 adhesion promoter is often utilized in parylene based MEMS devices to enhance the metal-parylene stiction. Accordingly, MIM structures with untreated and silane treated parylene dielectric were taken into consideration during this study (steps for silane A-174 coating is listed in the Appendix B-1). After parylene coating, top metal (5 nm/150 nm of Ti/Au) electrode was created using sputter deposition and wet etch techniques. Finally, the contact to bottom electrode was opened by oxygen plasma using inductively coupled plasma (ICP) etching. After MIM capacitors were fabricated, the percentage of failure of untreated and treated MIM
devices was evaluated under different DC voltage. For the second set of testing, A-174 treated parylene based MIM structures were fabricated with different parylene-C thickness starting from 1100 nm, 560 nm, 330 nm down to 130 nm. Appendix B-2 describes the procedure for submicron thick parylene-C coating. The TDDB of parylene MIM capacitors was next evaluated as a function of dielectric thickness and applied voltage, and the results are discussed below. The area of top metal electrode (1.2×10^{-3} \text{cm}^2) was kept constant throughout all experiments. The process flow for fabrication of MIM structure is described in Appendix B-3.

4.3 Results and Discussion

Prior to fabrication of MIM structures I have first studied the adhesion of different metal layers on parylene-C with and without oxygen plasma treatments using a scotch tape peel off method. In this experiment, I have first treated three inch silicon wafers with silane A-174 adhesion promoter and then deposited 10 µm thick parylene-C using PDS2010. Surface roughening is one of the common ways to improve the adhesion of metals on different substrates where one employs short plasma to roughen the surface prior to metal deposition. Next, I have treated some parylene wafers with a short oxygen plasma (recipe is added in Appendix A-5), and deposited different metals on treated and untreated samples. Finally, a double sided scotch tape was placed on all parylene wafers, the peel off test was next conducted, and the adhesion of these different metal layers on parylene-C is summarized in Table 4.1. Metal such as Cr/Au and Au showed poor adhesion on as deposited parylene-C surface but Au displayed good adhesion on oxygen plasma treated parylene. Interestingly, Ti/Au showed excellent adhesion on untreated
parylene surface. From the scotch tape peel off test, I found out that both Au and Ti/Au are highly preferred for plasma treated parylene and Ti can be used on untreated surface.

<table>
<thead>
<tr>
<th>Metals</th>
<th>As deposited parylene-C</th>
<th>Oxygen plasma treated parylene-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr/Au (5 nm/ 150 nm)</td>
<td>Poor</td>
<td>Medium</td>
</tr>
<tr>
<td>Ti/Au (5 nm/ 150 nm)</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Au (150 nm)</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Al (150 nm)</td>
<td>Poor</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table 4.1: Adhesion of different metals on oxygen plasma treated or untreated parylene-C surface.

After fabrication of MIM structures, the percentage of failure of untreated and A-174 treated parylene-C (1100 nm) devices was studied. Prior to this testing, two terminal electrical measurements was performed on all devices and ensured that they were not shorted. First, the sample containing 69 MIM devices was loaded on to the probe station (Wentworth labs Model 6000 Series), and probe tips that are connected to a high voltage DC power supply (Keithley model 248) were brought in contact with top and bottom electrodes. A digital video camera (1.3 M pixel USB2.0 Moticam 1000) attached to the microscope of the probe station was employed to lively update the status of each MIM device to a personal computer (PC). While it was probed, the initial stress voltage was setup to 400V, the power supply was turned ON and the status of the device was monitored on the PC for next 20 seconds. Subsequently, power supply was turned OFF.
and the two terminal electrical measurements were carried out to electrically verify the breakdown of parylene-C dielectric. Next, the applied voltage was varied with 40V increment from the initial/previous value and the above experimental steps were repeated until the breakdown of parylene-C occurred. The value of initial stress voltage was selected as 40-50% of the breakdown voltage of 1 µm parylene-C dielectric that was reported by Specialty Coating Systems [200].

Figure 4.2 shows the percentage of failure of untreated and A-174 treated MIM devices where the thickness of parylene-C dielectric was 1100 nm. The silane treated MIM devices showed predictable breakdown behavior as the stress voltage was increased from 400 V down 760V with 40V increment. It was observed that the number of failed devices increased as the applied voltage was increased and more than 95% of the breakdown occurred at 760V. The untreated parylene MIM devices showed random breakdown behavior as the stress voltage was varied from 0 to 640 V, and all devices
failed at 680 V. It is possible that the intrinsic defects formed during polymerization of parylene on untreated metal surface caused random breakdown behavior. From these results it was found that the silane A-174 adhesion promoter not only improved the stiction of parylene to the bottom electrode but also provided higher quality of film. Accordingly, a consistent dielectric breakdown was observed with increasing stress voltage and gave a higher breakdown voltage of 760 V. Figure 4.3a displays the staircase plot of time dependent breakdown of A-174 coated 1100 nm parylene-C MIM capacitor where Figure 4.3b shows an optical photograph of a failed device. The applied voltage was increased by 40 V every 20 seconds until the dielectric breakdown occurred. The parylene based MIM device failed at the 200th second when DC stress voltage was 760 V.

To realize low voltage parylene-C packaged TFTs a thinner dielectric film is always preferred. Next, time dependent dielectric breakdown of MIM capacitors with various parylene-C thicknesses from 1100 nm, 560 nm, 330 nm down to 130 nm was evaluated as a function of stress voltage (Figure 4.4). During fabrication of these devices bottom electrode was treated with A-174 adhesion promoter prior to parylene deposition, and the active area of capacitor was kept constant (1.2x10⁻³ cm²). The different parylene-C thicknesses were measured and verified with both Dektak (Dektak 3ST, Sloan Technology) profilometer and Zygo (ZYGO NuView 6000) 3D optical profilometer. The applied voltage was increased with 40 V increment from the initial value every 20 seconds until the breakdown occurred while the status of the devices were monitored lively on a PC. The MIM devices of parylene dielectric thicknesses of 1100 nm, 560 nm, 330 nm and 130 nm failed on 180th second at 760 V, 80th second at 360 V, 240th second at
220 V and 160th second at 90 V, respectively. As expected, the dielectric breakdown voltage significantly reduced with decreasing parylene-C thicknesses. The breakdown voltage of MIM devices for various parylene thicknesses were compared with previously
reported values and summarized in Figure 4.5. The breakdown voltage of 1 µm thick parylene-C dielectric is comparable to the values obtained by specialty coatings systems (SCS) but the device area was not mentioned in their work [201]. Jakabovic et al. demonstrated slightly higher breakdown voltage comparing to others using 2 mm x 2 mm capacitor structures [202]. Gowisanker et al. [186] confirmed that the active area of the device also plays crucial role in defining failure of MIM device for thin (1 µm or below) parylene-C dielectric film. It was shown that smaller device area results in fewer defects in that area which allowed MIM capacitors to handle higher electric fields. In this dissertation the active area of the device was kept constant throughout all experiments (1.2x10^{-3} cm²) and further studies need to be conducted in order to evaluate the defect density per unit area and dielectric leakage current.

![Figure 4.4: Time dependent dielectric breakdown of parylene-C MIM capacitors of thickness starting from 1100 nm, 560 nm, and 330 nm down to 130 nm as a function of applied DC voltage. The active area of the device was 1.2x10^{-3} cm².](image-url)
In conclusion, the adhesion and reliability of thin parylene-C dielectric was evaluated as a function of stress voltage and thickness using MIM capacitor structure. The silane A-174 adhesion promoter improved the metal-parylene stiction and quality of

Figure 4.5: The dielectric breakdown of thin parylene-C MIM capacitor as a function of parylene thickness where the Inset shows the magnified image of our results.

In conclusion, the adhesion and reliability of thin parylene-C dielectric was evaluated as a function of stress voltage and thickness using MIM capacitor structure. The silane A-174 adhesion promoter improved the metal-parylene stiction and quality of
the film (fewer defects) comparing to untreated film. The dielectric breakdown results find that both 1100 nm and 130 nm thick parylene-C films are pinhole free, and submicron films can be easily utilized for ultraflexible, low voltage and high performance TFTs.
Chapter 5

Parylene-C Encapsulated Single Walled Carbon Nanotubes Based Thin Film Transistors

5.1 Introduction

Flexible electronics have found their way into applications that require characteristics such as lightweight, mechanically flexible, low cost, that can be wrapped into complex shapes which are difficult to achieve with conventional electronics based on rigid silicon technologies [3, 5-7]. The manufacturing of organic semiconductor based flexible devices is relatively easy and inexpensive compared to silicon based electronics, and hence organic materials have been most widely utilized as active materials in various flexible devices including electronic artificial skin (E-skin), wearable sensors, flexible displays, radio frequency identification tags, implantable devices, etc. [3, 5-9]. Even though organic semiconductors (eg. pentacene) have begun to appear in commercial products, the low mobility of these organic molecules devices has limited their capability from realizing high performance flexible devices [41].
Carbon nanotubes with their unique chemical, physical and mechanical properties are promising nanomaterials for high performance electronic devices [203-205]. CNTs have high carrier mobility, large current carrying capability, and high mechanical flexibility [35, 38, 67, 68, 203-205]. One main advantage of carbon nanotubes is that similar to organic molecules they can be deposited using low cost solution based methods. Many research groups have demonstrated high quality electronic circuits from solution deposited nanotubes, and proven its potential as a cost effective technique for realizing high performance CNT devices [35, 38, 67, 206, 207]. To utilize CNT based flexible electronic devices for user friendly real world applications they should display ultra flexibility so that it can be transformed into different shapes. Furthermore, nanotubes are sensitive to the variations in the surrounding environment, and hence a compatible encapsulation layer is needed to protect these devices from the environment. Although SWNTs based flexible transistors have been previously realized and reported on flexible substrates such as PEN [67] PET, [35, 38, 68] PI, [41] PDMS,[207] Polyimide, [206] and Polyester (PE), [97] they failed to exhibit ultra high mechanical flexibility. For example, Takenobu et al. [67] reported transistors on 125 µm PEN film and observed 63% reduction in the ON current at a bending radius (R) of 6 mm. Similarly the TFTs made on 180 µm PET substrate demonstrated by Rogers et al. [35] displayed a ±5.5% change in the ON current where the smallest bending radius was 6 mm. CNTFETs made on 250 µm PET substrate by Chimot et al. showed 55% decrease in the transconductance below the radius of 3.3 mm [38]. The flexible carbon nanotube transistors reported by the previous three groups were not encapsulated. In addition, the gas and moisture permeability of these plastic films causes elongation and shrinkage, and
has become a serious problem in ensuring their long term stability [208]. CNTs have an excellent tendency to absorb gaseous molecules easily from the environment due to their small size, hollow geometry and large surface area to volume ratio. They are extremely sensitive to the vapors in environment which can significantly affect the electrical properties of carbon nanotubes devices [40, 101, 209, 210]. Hence, a robust passivation technique is required to isolate nanotubes electronics from the environmental variations and contaminations before utilizing CNTs in nano electronics applications. Even though thin films of ceramic and polymeric encapsulation layers have been previously reported for carbon nanotubes devices there are several limitations to utilizing these techniques for flexible device applications. For an example, thin Si$_3$N$_4$ (50 nm catalytic chemical vapor deposited at 270°C) and Al$_2$O$_3$ (15 nm deposited using ALD at 300°C) layers are demonstrated for passivating CNT transistors [61, 204, 211]. In both of these approaches, the materials are deposited and/or require post-deposition annealing steps at elevated temperatures which limit their applications in flexible devices. Similarly, polymeric encapsulants such as polymethyl-methacrylate (1.7 µm PMMA) and SU-8/PMMA (2 µm / 200 nm) have also been reported [187, 212]. The drawback with these polymeric materials are that gas and moisture molecules diffused through them and caused variations in the transistor electrical characteristics. Furthermore, the flexibility of a thin film is inversely proportional to the cube of its thickness [56]. Thus, the thin film passivation approaches with good barrier properties are essential to protect carbon nanotubes from environmental factors while preserving the flexibility of the devices. Addressing these critical challenges (eg. ultra flexibility and encapsulation) and
rectifying it would propel flexible electronics into a new level opening up doors for ultra flexible, high speed, easily manufacturable, low cost devices for numerous applications.

In this chapter, a parylene-C packaged SWNTs based TFTs on a polymeric substrate is implemented and then I studied its mechanical robustness. The SWNT TFTs exhibited p-type behavior with the mobility of $\sim 54.6 \text{ cm}^2/\text{Vs}$ and an ON/OFF ratio of $\sim 3\times10^3$. Furthermore, through mechanical testing I found that the TFTs can handle multiple bending cycles, and was operational even after exposure to the smallest bending radius of 1.5 mm. After sharp folding conditions that induced both compressive and tensile strains on the TFTs, the ON current of the transistors varied only within range of $\pm 0.3\%$ and $\pm 8.9\%$ where the maximum change was observed at smallest bending radius (R=1.5 mm). To the best of my knowledge, this is the first instance of environmentally benign and ultrathin (total thickness of 12 μm) carbon nanotube based flexible FETs where the same polymeric material is utilized as substrate, dielectric and encapsulation layer. Moreover, this is the highest flexibility reported at the smallest radius of curvature of 1.5 mm for flexible CNTFETs. This versatile parylene-C packaged SWNT based technology lays the foundations for the realization of ultra flexible, high performance and biocompatible nano devices, which can be readily utilized in disposable biosensors (without encapsulation), flexible electronics, wearable and implantable (e.g. neural prosthetic implants) applications.

5.2 Fabrication of Flexible SWNTs TFTs

The schematic of the flexible SWNT transistor is shown in Figure 5.1a and the process sequence begins with the deposition of a 10 μm thick parylene-C layer on an
oxidized (500nm) silicon wafer at room temperature. Flexible devices using parylene-C as a flexible substrate is increasing. The main advantage of this approach versus others is that one can deposit parylene substrate on a carrier wafer, complete all fabrication processes, and peel off from the career wafer at the end. Due to its higher tensile strength (70 MPa) and Young’s modulus (3.2 GPa) [55] parylene-C films as thin as 4 μm can be easily fabricated and still peeled off without tearing it. In a general model for a thin film, the bending rigidity of a film is proportional to the third power of its thickness [56] and is also dependent on the elastic property of the material that comprises the film. The thickness of the parylene-C film can be well controlled down to 1 μm using commercially available parylene deposition systems, and hence the device flexibility can be engineered to meet the needs of different applications. Next, Aluminum gate electrodes (1500Å) were sputter deposited and patterned using conventional optical lithography and wet etching. Then, a 1μm thick parylene-C gate dielectric layer was deposited. Polymer dielectrics are heavily utilized in flexible CNT based electronics because they are easy and inexpensive to process, and compatible with nanotube and metal electrodes while maintaining flexibility. Polymeric material such as Polyimide [67], SU8 [35] and PMMA [68] have been reported as gate dielectrics using solution processed techniques such as spin coating. The drawback of employing these approaches for gate dielectrics is that they are usually cured at high temperature which limits their applications for flexible devices made on polymeric substrates. Moreover, these materials are not very compatible with standard micro fabrication processing methods, and hence require sophisticated fabrication techniques (such as imprinting) to develop a complete transistor. Parylene-C is deposited at room temperature and provides a pinhole free and conformal
film, and hence it is ideal for flexible devices. The dielectric constant of the parylene-C is 3.2 and due to its high breakdown voltage and low leakage current several organic devices [69, 199] are made using parylene as a gate dielectric, yet applications of parylene in CNTFETs is rarely explored. After parylene gate dielectric deposition, source and drain electrodes (Au, 1500Å) were next sputter deposited, and were patterned by wet etching. SWNTs were assembled across source-drain electrodes utilizing dielectrophoretic assembly process at room temperature.

Figure 5.1 Parylene-C packaged SWNT TFTs. (a) 3D schematic of bottom gated SWNT TFT before parylene-C passivation. (b) Arrays of SWNT TFTs fabricated on a 3-inch
wafer illustrating wafer scale manufacturing capability. (c) The high resolution SEM micrograph of assembled SWNTs between source (S) and drain (D) electrodes of a transistor with a channel length of 10 µm and a width of 2000 µm respectively. Inset: Top view optical photograph of the same transistor fabricated from gold Source and Drain electrodes and an aluminum (bottom) Gate electrodes, where the thickness of the parylene-C gate dielectric was 1 µm. (D) The parylene film in which the devices were embedded was wrapped around an index finger and non planar flexibility of the transistors is illustrated in the inset. The process flow for fabrication of all-parylene TFT is described in Appendix C.

Solution-based processing techniques [35, 38, 67, 97, 206, 207] have routinely been utilized to make SWNT flexible thin film transistors. These approaches for patterning nanotubes are favorable for realizing flexible CNT transistors since they utilize low temperatures compatible with polymeric substrates, and the nanotubes suspended in a solution have been purified and are free of metallic residues. Among the solution based methods, field assisted dielectrophoretic assembly in particular is one of the preferred methods [171-173, 213-216]. For example, using DEP, nanotubes can be deposited in desired locations with alignment [171]. Moreover, DEP can also provide real time control over the density of assembly [172] while the current induced oxidation eliminates or minimizes the number of metallic nanotubes in the channel [173]. Accordingly, dielectrophoretic assembly was utilized to assemble the SWNTs between the source and drain electrodes. SWNTs from the CMOS grade aqueous solution procured from Brewer Science were used.

The average length and diameter of these SWNTs were 2µm and 1.25nm, respectively. The weight concentration of the SWNT in this aqueous solution was 0.046% while the pH of the supplied solution was 6.5. Prior to assembly, the SWNTs
were sonicated for 2 hours with an ultrasonic cleaner (Branson B-22-4). To perform DEP assembly, an AC voltage with an amplitude of 5V peak-to-peak at a frequency of 300 KHz through a function generator (Agilent 33220A) is first applied. After the voltage was turned on, a droplet (2-3μl) of the SWNT solution was dispensed on the active channel area. Following 20 seconds of assembly the sample was blow dried and the power was turned off concluding the DEP process which resulted in the assembly of SWNT bundles between the source and drain electrodes. Assembly process is low temperature and is amenable to wafer scale fabrication, [215, 216] and figure 5.1b displays carbon nanotube TFTs fabricated on a 3-inch wafer. Figure 5.1c shows the SEM micrograph of assembled SWNT bundles inside the channel whereas an optical photograph of the fabricated TFT is displayed in the inset. As seen in the SEM micrograph from figure 5.1c, the SWNTs are very dense near the edges of source and drain electrodes, but moving away from these electrodes well aligned and separated single bundles of nanotubes are observed. This pyramid like CNT structures near the edge of the electrode is caused by the large surface forces associated with the drying of liquids which has pulled nanotubes together and created denser bundles of SWNTs near the edges of the source and drain electrodes. The problem can be resolved by using critical point drier immediately after DEP assembly of carbon nanotubes [217].
5.3 Results and Discussion

5.3.1 Electrical Characteristics of Flexible SWNTs TFTs

After DEP assembly, current induced oxidation was performed which resulted in electrical breakdown of the metallic SWNTs [173] inside the channel of the FETs. Breakdown is needed since commercially available CNT solutions include both metallic and semiconducting nanotubes, where the metallic nanotubes present in bundles in the channel region result in poor transistor properties. The electrical breakdown of metallic nanotubes was conducted at a gate to source bias voltage of 40 V where the drain-source voltage (V_{DS}) was ramped from 0 V to 15 V in 1 V increments. The I-V characteristics of the transistors were measured using a semiconductor parameter analyzer (HP4155A) at ambient room temperature and pressure. Figure 5.2 illustrates the I_{DS}-V_{DS} measurement from one of the devices ($L=10 \, \mu m$ and $W=2000 \, \mu m$) before (a) and after (b) the burning process. Before electrical breakdown, the transistor was ON at a gate voltage of 40V as seen in Figure 5.2a. When V_{DS} was increased from 0 V to 15 V the higher current passed only through the metallic nanotubes caused electrical burning. During current induced electrical breakdown process the semiconductor SWNTs were depleted of charge carriers at high gate voltage ($V_G=40 \, V$) which prevented them from getting damaged. After electrical breakdown, the conductance of the devices decreased by five orders magnitude measured at $V_G=40 \, V$ while the ON/OFF current ratio increased by two orders of magnitude indicating that the metallic paths in the channel have been reduced significantly. The ON/OFF current ratio of the above TFT was determined at gate voltages (V_G) of -40 V and 40 V at a source-drain voltage (V_{DS}) of 0.7 V. As the V_G was
varied from -40 V to 40 V with 10 V increments, a pronounced decrease in conductance was observed and the transistor exhibited a p-type behavior.
Figure 5.2 I_{DS}-V_{DS} measurements (a) before and (b) after electrical breakdown from the flexible SWNT FETs. Drain to source current (I_{DS}) was recorded while voltage across the drain to source electrodes (V_{DS}) was swept from -1 to 1 with 10mV steps, where the gate voltage (V_{G}) was varied from -40 to 40V with 10V increments. After electrical breakdown, the device exhibited an ON/OFF ratio that is 2 orders of magnitude greater than that one before breakdown where ON and OFF currents are measured at V_{G} of -40V and 40V for V_{DS} = 700mV.

I next measured the transfer characteristics of the CNT transistor after electrical breakdown and the results are shown in Figure 5.3. A drain-source current (I_{DS}) modulation by gate voltage was observed when the V_{DS} was reduced from 1 V to 0 V. The inset represents a semi-log plot of I_{DS} vs V_{G} at a V_{DS} value of 1 V displaying an ON/OFF ratio of $\sim 3 \times 10^3$. The transconductance deduced from Figure 5.3 for V_{DS}=0.5 V is 0.5653 μS. The effective mobility of a device with a channel length “L_{DS}” and width “W_{DS}” was calculated using the standard expression [97]

$$\mu_{EFF} = \frac{L_{DS}}{W_{DS}} g_M \frac{t}{\varepsilon} \frac{1}{V_{DS}}$$

where “g_M” is the transconductance in the linear regime, “t” and “ε” are thickness and dielectric constant of parylene-C gate dielectric, respectively. For the device with a channel length of 10 μm and a width of 2000 μm (shown in Figure 5.2 and Figure 5.3), the field effective mobility was $\sim 54.6 \text{ cm}^2/\text{Vs}$ where a value of 3.2 was used for the dielectric constant of the parylene-C gate dielectric. The SEM micrograph in Figure 5.1c reveals that only a small portion ($\sim 73 \mu$m) of the entire channel region was covered with SWNTs. Thus, a W_{DS} of 73 μm was used for the mobility calculation. Using the SEM in Figure 5.1c, I first measured the average bundle diameter and average separation distance
between bundles, and then estimated W_{DS}. Among all the 75 devices tested, the above device demonstrated the best electrical characteristics in terms of both effective mobility and ON/OFF current ratio.

![Graph showing transfer characteristics](image)

Figure 5.3 Transfer characteristics after electrical breakdown of metallic SWNTs from the channel region of the SWNT FETs (device from figure 5.2). As the gate voltage (V_G) of the transistor was increased from -40V to 40V with 10V increments, a pronounced decrease in conductance was observed which exhibited a p-type transistor behavior. The drain-source current (I_{DS}) was strongly modulated by the gate voltage as the V_{DS} was decreased from 1V to 0V. The transconductance deduced from the graph (slope in the linear region) was 0.5653 μS ($V_{DS}=0.5V$). The field-effect mobility of this device was calculated as ~2 cm2/Vs, where the parylene-C gate dielectric constant=3.2, $L_{DS}=10$ μm and $W_{DS}=73$ μm, respectively. Inset: magnified image of I_{DS}-V_G at $V_{DS}=1$ V indicating an ON/OFF ratio of 10^3.
5.3.2 Mechanical Evaluation of Flexible SWNTs TFTs

After device parameter optimization via current induced electrical breakdown, a thin (1.0 μm) parylene-C layer was deposited as the passivation layer, and contacts to the electrodes were opened using dry etching with O₂ plasma. The extreme flexibility and conformability of the fabricated parylene packaged TFTs are illustrated in figure 5.1d. The detail information of parylene-C deposition and patterning is discussed in chapter 3 [218]. After passivation, electrical properties of these TFTs were measured and analyzed with that of before encapsulation. The effect of parylene-C passivation in the electrical characteristic of SWNTs based TFTs were analyzed separately in the next chapter.

The parylene-C encapsulated SWNT TFT was next peeled off from the silicon substrate and the mechanical flexibility of the CNTFET was studied. Mechanical bending tests were realized by wrapping the CNTFETs embedded in between two parylene-C layers around cylinders of different radii and holding it in their bent position for 5 minutes. Subsequently, they were unwrapped and the transfer characteristics of the devices were measured. For a given bending cycle, the radius of curvature through which the device undergoes bending was decreased in steps with values from 20, 15, 7.5, 4.5, and down to 1.5 mm. Six such repetitive cycles were carried out on each device. Figure 5.4a displays an optical photograph of a 12 μm thick parylene film embedded with TFTs wrapped around a cylinder (pen refill) with a radius of 1.5 mm which resulted in ~9 layers around it. Figure 5.4 b,c display the transfer characteristics of TFTs where the results were shown after the first and sixth bending cycle (same device from Figure 5.2 and 5.3). A decrease in drain to source current from 7.83 μA to 5.93 μA (24.3%) was
observed after peeling the device off the silicon substrate. After peeling, the effective mobility of the transistor was reduced from 54.6 to 41.9 cm2/Vs, and a small decrease in the I_{DS} (measured at V_{GS}=-40 V) was also observed, which in turn had no significant impact on the ON/OFF ratio and threshold voltage for these devices (Figure 5.4b). The peeling off parylene film from the substrate is easy and straightforward compared to the other approaches where researchers have used sacrificial layers such as photoresist, oxides, aluminum or a double-sided tape which makes the fabrication process complicated. The decrease in the drain current can be attributed to the stretching and misplacement of CNTs occurring during the peel off process [219, 220]. During peeling, the stronger adhesion of parylene film to the silicon carrier wafer may cause permanent deformation of embedded devices due to stretching of the parylene-C substrate. By reducing the adhesion of parylene to the Si carrier wafer (which can be achieved by using an antistiction MICRO 90 solution) one can alleviate the impact of the peeling process. The devices did not display any significant change in their electrical properties up to six cycles. For example, the effective mobility (~40.4 cm2/Vs), transconductance (~0.418 μS), ON/OFF ratio (~10^3) and the threshold voltage (~10 V) after the sixth bending cycle remained unchanged from their initial values (Figure 5.4c).

When the CNTFETs embedded inside a parylene film are wrapped around a cylinder, they experience a cylindrical deformation where the strain is one dimensional. The SWNT transistors will be under compressive stress when the TFT is facing the surface of the cylinder. In the latter case, transistors face outward experience tensile stress. For a given radius of curvature “R”, and a thickness of parylene-C composite film “T” which includes the thickness of substrate, gate dielectric and encapsulation
layers, the uniaxial strain “η” in the thin film (for R>>T) is described by [221]
\[\eta = \frac{T}{2r} . \]

The change in ON current versus strain during each bending cycle is plotted in Figure 8. The change in current is given by \(\frac{I_{0,\text{ON}} - I_{\text{ON}}}{I_{0,\text{ON}}} \), where “\(I_{0,\text{ON}} \)” and “\(I_{\text{ON}} \)” represent the ON current of the above device before and after the bending test at \(V_G=-40 \) V and \(V_{DS}=0.5 \) V. During each bending cycle, the turn ON current either increased or decreased at random, and the variation in the ON current was found to be independent of the bending radius. After repetitive mechanical bending experiments that induced both compressive and tensile strains, the drain current ratio varied only within a range of ±0.3% and ±8.9%, where the maximum change was observed at the smallest bending radius of 1.5 mm. To the best of our knowledge, this is the highest flexibility reported of encapsulated ultrathin CNTFETs at the smallest radius of curvature of 1.5 mm.
Figure 5.4 Mechanical flexibility of Pa-C packaged SWNT TFTs (same device from Figures 5.2 and 5.3). (a) The optical image of a 12 μm thick of parylene-C embedded
SWNT TFTs are wrapped around a pen refill with a radius (R) of 1.5mm which resulted in about ~ 9 layers around it. (b) Transfer characteristics after first bending cycle shows reduction in ON current before and after peeling off from the wafer, where I_{DS} dropped from 7.83 µA to 5.93µA (measured at V_G=-40V). (C) I_{DS}-V_G after the sixth cycle showed no degradation in the electrical performance of the devices.

The real time bending flexibility (electrical characteristic of TFTs while it is bent) of these devices for various thicknesses of substrate and encapsulation layers will be studied in the future to investigate the long term flexibility of these devices. For example, the smallest bending radius is set by the failure strain of the parylene-C substrate and passivation layer. Thus, devices with different flexibility can be achieved by scaling the total thickness of the parylene-C composite. The thickness of parylene passivation layer and its effect in the electrical characteristics of carbon nanotube TFTs in ambient environment and aqueous solutions medium also need to be studied to further explore the barrier properties of packaged devices. These issues will be reported in our future-work.
Figure 5.5 Extremely Flexible SWNT TFTs (same device from Figure 5.2 and 5.3). Change in normalized ON current ($\Delta I/I_o$) of parylene-C SWNTs TFTs is plotted as a function of the strain during each bending cycle. The maximum variation was $\pm8.9\%$ measured at a radius of 1.5mm.

In conclusion, a highly flexible and biocompatible SWNT TFTs which can be utilized in biosensor applications and after encapsulation for flexible electronics, wearable and implantable devices is demonstrated. These devices were fabricated on a parylene-C substrate (10 μm) which also acted as the gate dielectric (1 μm) and encapsulation layer (1 μm). SWNTs were assembled utilizing dielectrophoretic assembly process at room temperature. These TFTs displayed p-type transistor behavior with effective mobility of $\sim54.6\text{cm}^2/\text{Vs}$ and ON/OFF ratio of $\sim3\times10^3$. After subjected to extreme bending conditions, parylene-C packaged devices showed no significant change in its performance. The encapsulated and ultraflexible TFTs can be bent to radius down to 1.5 mm and remained operational. The turn ON current of the transistor varied only $\pm8.9\%$ at the smallest bending radius of 1.5 mm. This versatile technology offers ultra flexibility and robust passivation for carbon nanotube based flexible electronics, and also applicable for both bottom and top gated transistor geometry. In addition, since the TFTs were composed of the same parylene-C material it will eliminate thermal mismatch problems caused during operation. The ultrathin realization of flexible electronics with parylene-C will find applications in biosensors, wearable and implantable device applications such as neural prosthetic implants.
Chapter 6

Parylene-C Passivation for SWNTs FETs

6.1 Introduction

Flexible electronics need to be protected from environmental contamination, mechanical damage and detrimental gases. A good encapsulant should have high dielectric strength, high electrical resistivity, high thermal conductivity, low dielectric constant, conformality, low moisture absorption, solvent resistance, low thermal expansion coefficient, thermal stability and high purity [70]. Polymer and ceramic films are wildly used in packaging industry today. Ceramic encapsulants such Si$_3$N$_4$, SiO$_2$ and Al$_2$O$_3$ typically have superior thermal stability, highly impermeable to atmospheric gases, higher dielectric strength, higher tensile strength, higher thermal conductivity, and lower thermal expansion coefficient comparing to polymeric films. The drawback of using ceramics as a passivation layer is that films create cracks and do not provide 100% pinhole free deposition [71, 72]. Polymer encapsulants such as polyimide, parylene, epoxy and silicone give conformal pinhole free coating and have also been reported [70, 72, 73] for encapsulation of organic devices. However, the gases and moisture permeation through polymeric films challenges their long term stability. As a result, impermeable thin film passivation has been created using a multilayer composite barrier.
coating of alternating organic/inorganic thin layers to protect flexible organic devices [74, 75].

Due to their low carrier mobility organic molecules have limited their capability from realizing high performance flexible devices [41]. Single-Walled Carbon Nanotubes (SWNTs) with their unique physical, electrical and mechanical properties are being considered as a potential replacement for existing semiconducting materials in flexible electronics. Their mobility can exceed $10^5 \text{cm}^2/\text{Vs}^{-1}$, and they have large current carrying (10^9A/cm^2) capability, higher ON/OFF ratios (>105) and extreme mechanical flexibility [39]. SWNT based field effect transistors (FETs) exhibit p-type behavior in the ambient environment, and they can be converted to n-type by doping e.g. polymer functionalization [222]. Carbon nanotube (CNT) flexible devices such as high frequency FETs, p-n diodes, and logic circuits have already been reported [41]. Their large surface area to volume ratios and extreme sensitivity to the molecular species in the environment (e.g. oxygen, moisture, etc.) can significantly affect the electrical properties of CNT transistors [95, 205, 212], and numerous CNT based sensors (chemical and biological) have been realized. Moreover, for electronic device applications, such sensitivity can result in unexpected behavior including charge trapping, drift in transistor properties, etc. Furthermore, the contaminants in the ambient such as dust, as well as handling can result in degradation of device properties. Accordingly, proper passivation methods need to be evaluated for carbon nanotube based devices. Despite the enormous potential of CNT based electronics and the importance of encapsulation, I found very little studies on encapsulation of CNT based devices. One of the main goals of the thesis is to realize CNT devices on flexible substrates which happen to be polymeric in nature.
Accordingly, the encapsulation needs to be low temperature, inert and a good barrier for moisture and other types of gases. For applications that need extreme flexibility also requires that the coating need to be thin enough not to reduce the flexibility of the transistor as thicker films tend to increase the rigidity of the devices.

Several groups have already explored passivation of CNT based devices with thin polymeric films yet had limited success. For example, Dai et al. [212] have reported a 1.7 µm polymer (polymethyl-methacrylate (PMMA)) coating for passivating carbon nanotube based transistors. When the PMMA encapsulated devices were exposed to an humid ambient, the electrical characteristics of the transistors changed due to permeation of water molecules through PMMA. Similarly, Zhang et al. [187, 223] used SU-8/PMMA (2µm/200nm) to passivate their CNT FETs. After exposing their devices to an NO$_2$ environment for one hour, they have noted that the gas molecules diffused through the SU-8/PMMA layer and caused variations in the transistor behavior. In addition to polymeric encapsulants, chemical vapor deposited (CVD) Si$_3$N$_4$ (50nm catalytic chemical vapor deposited at 270°C)) and Al$_2$O$_3$ (15nm deposited using atomic layer deposition (ALD) at 300°C) layers have been utilized as passivation films for CNTFETs [61, 204, 211, 224-226]. To achieve high quality of these films they are deposited at elevated temperature and/or go through high temperature post annealing deposition treatments. These high temperature deposition conditions enable gas molecules to react with carbon atoms, create defects in the nanotube and eventually introduce significant degrade in their performance or destroys the devices. In addition, flexible substrates cannot stand this kind of high temperature process and hence the above encapsulation techniques are not desirable for carbon nanotube based flextronics applications.
To realize flexible CNT FETs which are insensitive to environmental variations, high quality and thin encapsulation layers are needed which preserve the characteristics of the transistors, maintain their flexibility and at the same time possess good barrier properties. In this chapter, I demonstrate a parylene-C passivation technique for carbon nanotube based thin film transistors which can be readily utilized for devices made on flexible and rigid substrates. Parylene-C is a pin hole free material, and can provide a uniform conformal coating over all surfaces regardless of the configuration of the surface (e.g. sharp edges and holes). It is also chemically inert, and has high dielectric strength and low permeability to moisture and gases. Film deposition is stress-free (deposited at room temperature), hence it does not introduce any adverse effects to the encapsulated devices. These attractive properties make parylene-C a promising encapsulation layer for flexible CNT based thin film transistors. First, I have fabricated CNT FETs on a flexible parylene-C substrate. After measuring the electrical characteristics of the CNT FETs, I have next encapsulated the devices with thin (1 μm and 3 μm) parylene-C layers and studied the characteristics of the devices before and after encapsulation. After 1 μm parylene-C passivation (PDS2010 pump down time ~10 min), more than 10% decrease in two terminal contact resistance and 10% increase in ON current were observed in most of the devices. No significant change in threshold voltage, ON/OFF current ratio, and gate hysteresis width (H_w) was observed after encapsulation. Treating unencapsulated devices in high vacuum for long hours suppressed the gate hysteresis width but did not fully eliminate it. The I-V measurements of the 1 μm parylene-C passivated TFTs after 28 hours in high vacuum showed no significant changes in the transistor properties and demonstrated that a thin 1 μm parylene-C film provides a proper encapsulation against
various gases in the environment. Finally, I have studied the change in the electrical properties of parylene-C packaged TFTs for encapsulation thickness of 1 µm and 3 µm. My findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the encapsulation of CNT devices such as FETs, p-n diodes, and logic circuits fabricated on flexible/rigid substrates.

6.2 Fabrication of Parylene-C Passivated Flexible SWNTs TFTs

A 3D schematic of fabrication of a flexible SWNTs transistor is shown in figure 6.1(a) (see Appendix C for detailed information). First, a 10 µm thick parylene-C layer was deposited (PDS2010, Specialty Coating Systems, Indianapolis, IN) on an oxidized (500nm) silicon wafer at room temperature. Next, Aluminum gate electrodes (1500Å) were sputter deposited and patterned using conventional optical lithography and wet etching. Then, a 1 µm thick parylene-C gate dielectric layer was deposited. Subsequently, source and drain electrodes (Cr/Au, 5/150nm) were sputter deposited, and were patterned by wet etching. Figure 6.1b displays the optical image of one of the sample devices fabricated. SWNTs were assembled across source-drain electrodes utilizing dielectrophoretic assembly process at room temperature (Figure 6.1c). After assembly, device parameters were optimized by removing metallic SWNTs from the channel via current induced electrical breakdown process. Finally, the parylene-C passivation layer was deposited, and contacts pads were opened for probing by etching.
parylene with oxygen plasma in the inductively coupled plasma (Plasmatherm 790 ICP) machine.
Figure 6.1: (a) A 3D schematic drawing of bottom gated SWNT FETs fabricated on a 10 µm thick flexible Parylene-C substrate (b) an optical image of the same transistor (c) The high resolution SEM micrograph of DEP assembled SWNTs between source (S) and drain (D) electrodes (d) Cross sectional drawing of a Parylene-C passivated transistor.

For both 1 µm and 3 µm thick parylene coating photo resist was used as a mask to etch parylene. The detailed information of parylene-C deposition and patterning is published in the previous chapter [218]. The cross section of parylene-C encapsulated SWNTs FET is shown in figure 6.1d.

6.3 Results and Discussion

Carbon nanotubes are very sensitive to changes in environmental conditions such as gases, moisture etc., and hence require proper encapsulation to protect them from the atmosphere. After current induced electrical breakdown and subsequent transistor measurements, samples were loaded into the parylene deposition machine (PDS2010) and it started to pump down. After nearly 10 minutes, the system reached a low vacuum pressure (1 mTorr), the machine was turned ON and the pyrolysis process has begun. During this process, parylene dimer is first vaporized at 175 °C and then the dimer will turn into a monomer at 690 °C. This process is so called pyrolysis which lasted for 1 hour and 20 minutes, and the devices were exposed to vacuum (1 mTorr) during this process. Finally, parylene monomer moved into the deposition chamber and the 1 µm parylene-C polymerization was completed in 28 minutes.

After 1 µm parylene passivation, electrical properties of these TFTs were remeasured, analyzed and compared with the values before encapsulation, and the results
are summarized in Figure 6.2. Figure 6.2a shows the percentage of change in turn ON resistance (R_{ON}) and the turn ON current (measured at $V_G = -40V$) of 15 good TFTs before and after encapsulation. Definition of a ‘good TFT’ is that the majority of metallic SWNTs were removed from the channel during current induced electrical breakdown process, and the transistor does turn OFF at a specific gate voltage. Among them, device number from 1 to 5, 6 to 10 and 11 to 15 have channel lengths (L) of 3, 5 and 10 µm respectively. The purpose of employing devices with different L is to study the effectiveness of conformal parylene-C passivation when the gap between the source and drain electrodes are larger than the average length of the nanotubes. SWNTs were placed via DEP assembly, and as L was increased, fewer nanotubes bridged the source and drain electrodes due to scaling effect of dielectrophoretic force (F_{DEP}). The magnitude of the DEP force scales with the following relationship [227]:

$$|F_{DEP}| \propto \frac{V^2}{L^3}$$

where V and L are the applied voltage and the characteristic length (distance between source and drain) of the electrodes, respectively. Thus, the amount of assembled nanotubes across the channel can be controlled by scaling the dielectrophoretic force via adjusting the amplitude of the electric field or the gap between the electrodes. In the above case, characteristic length was varied to change the magnitude of the force where shorter channel TFTs had more CNTs connecting the source and drain electrodes where fewer SWNTs were assembled in long channel devices. The two terminal resistance measured at $V_G = -40 V$ for a typical 3, 5 and 10 µm channel length devices ranged from 0.214 to 30.65, 0.645 to 175.7, and 23.37 to 159.25 KOhms, respectively. More than
10\% decrease in turn ON resistance was recorded in most of the devices with L=3 \(\mu \)m, L=5 \(\mu \)m and L=10 \(\mu \)m, respectively. It was found that the deposition of a 1 \(\mu \)m parylene-C layer not only fixed the position of the CNTs at the metal-nanotube interface, but also improved the two terminal contact resistance (measured at \(V_G = -40 \) V) between the gold electrodes and the CNTs. A thin layer of parylene-C film conformally coated nanotubes which were placed on the metal electrodes, pressed them down and fixed CNTs in their respective position. Parylene-C is known to densify CNTs by linking neighboring tubes together which also resulted in increased electrical stability [189, 228].

Hysteresis is a common phenomenon in carbon nanotube transistors, and it is attributed to charge injection from nanotubes at a large gate voltage [190], trapped charges at the dielectric-CNT interface and adsorption of charges and water molecules on CNT surface from ambient environment [191, 212], other trapped charges from solution processed CNTs [229] (e.g. surfactant, ionic molecules, etc.) and contamination originating from the device fabrication processes [229]. I next investigated the hysteresis behavior of CNTFETs before and after parylene-C passivation. The hysteresis width between forward and backward gate voltage sweep from device 1 before and after encapsulation (Figure 6.2b) is 47.5 V in \(V_G \). As deposited, parylene-C is hydrophobic and oxygen free material. During fabrication of TFTs, the surface of the parylene-C dielectric was roughened in oxygen plasma to enable the adhesion of Cr/Au source/drain electrodes on to parylene. I believe that this oxygen plasma treatment broke bonds on the parylene surface and induced fixed and mobile charges at the parylene-SWNT interface, and caused large hysteresis between the forward and backward gate sweeping. Wong et al. observed similar behavior in pentacene transistors built on a parylene dielectric [69].
Figure 6.2: Device characteristics of SWNT TFTs after a 1 μm thick parylene-C deposition where the average length of carbon nanotubes utilized in the experiments were nearly 2 μm. Devices from 1 to 5, 6 to 10 and 11 to 15 have channel lengths of 3 μm, 5
µm and 10 µm, respectively. (a) Measured statistical variation in two terminal resistance (at \(V_G = -40 \) V) and turn ON current (at \(V_G = -40 \) V) after 1 µm thick parylene-C encapsulation. More than 10% decrease in the two terminal contact resistance was measured in all SWNT FETs with \(L \) of 3 µm, 5 µm and 10 µm. The drop in the resistance is observed due to CNT densification and fixing the nanotube position at the metal-CNT interface after parylene coating. The transistors with shorter channel lengths (\(L = 3 \) µm and 5 µm) showed a 10% increase in ON current after encapsulation. Interestingly, longer channel devices (\(L = 10 \) µm) showed only marginal increment in ON current measurements which could be attributed to a disconnection of loosely connected nanotube bridges by the deposited parylene-C film. For example, device 14 exhibited only 0.86% of increase in the \(I_{ON} \) after the passivation. (b) Transfer characteristics (\(I_{DS}-V_G \)) of device 1 before and after parylene encapsulation. Before passivation, transistor exhibited \(\text{ON/Off} = 2 \times 10^2 \), \(V_{TH} = -20 \) V and \(H_W = 47.5 \) V. After parylene-C passivation, the ON current of the device improved by 12.43% from its initial value but no significant change in \(V_{TH} \), ON/OFF current ratio, and the hysteresis width was observed. A thin 1 µm parylene coating protected CNTs from the penetration of molecules and/or chemical spices in the environment (eg. gases, water moisture and carbon particles). It also acts as a barrier layer for the trapped charges that exist at the parylene-tube interface and on the CNT surfaces, and hence no change was observed in the \(V_{TH} \) and \(H_W \) after encapsulation.

Moreover, SWNTs were suspended in DI water, and DEP assembly and I-V characteristics of all TFTs were conducted in an ambient environment which allowed more charges to be adsorbed on the CNT surface. The short oxygen plasma made the top parylene dielectric surface hydrophilic and attracted more molecules at CNT-dielectric interface and resulted in a large gate hysteresis. The hysteresis effect in parylene-C packaged SWNT FET can be minimized or eliminated by treating nanotube transistors for long hours in high vacuum prior to parylene encapsulation which is discussed in the next section. Before passivation with parylene-C, the CNT transistor (device 1) exhibited ON/Off ratio of \(2 \times 10^2 \), threshold voltage of -20 V and a hysteresis width of 47.5 V. As shown in Figure 6.2a, parylene-C encapsulation fixed the position of CNTs and hence the turn ON resistance of the device decreased by \(\sim 26\% \), which resulted in 12.43% increase
in the I_{ON}. No significant change in V_{TH}, OFF current, and H_W was observed after encapsulation. Statistics carried out on fifteen devices with different channel lengths indicated (Figure 6.2a) a more than 10% increase in ON current in the first 10 devices where the channel length varied from 3 to 5 μm. Transistors with 10 μm channel length displayed minor changes in the ON current (eg. device 14 exhibited only 0.86% of increase in the ON current) but other electrical parameters such as OFF current, V_{TH}, and hysteresis width remained unchanged. This behavior could be attributed to a disconnection of loosely connected nanotube bridges by the deposited parylene-C film.

The average length of carbon nanotubes utilized in our experiments were nearly 2 μm, and when the SWNTs were assembled across a channel whose length (10 μm) is greater than the length of an individual CNTs, they will create rope kind of structure where the head of one tube will connect to the tail of another tube and eventually form a bridge. During parylene-C deposition, it is likely that parylene is being deposited between loosely connected nanotubes and has resulted in discontinuity of the bridges between the electrodes resulting in marginal increase in I_{ON} but the other transistor properties are not affected. In overall, a thin 1 μm parylene film seals the nanotubes and protects them from the penetration of molecules and/or chemical spices in the environment such as gases, water moisture, carbon particles, etc. It also acts as a barrier layer for the trapped charges that exist at the parylene-nanotube interface and on the nanotube surfaces, and hence no change was observed in the V_{TH} and gate hysteresis after encapsulation.

It is interesting to note that devices on which metallic SWNTs were abundantly present in the channel region even after the electrical breakdown (low ON/OFF ratio devices) displayed a different behavior than those of good devices (high ON/OFF ratio...
devices) after the parylene-C encapsulation as illustrated in five TFTs (Figure 6.3). These devices showed more than 13% increase in the two terminal contact resistance and ON current, and more than 53% increase in OFF current (measured at $V_G=40V$). The hysteresis in electrical characteristic (I_{DS} versus V_G measurement) from device 1 is shown in Figure 6.3b. The percentage change in R_{ON}, ON and OFF current for this device were -34.09%, +40.04% and +63.4%, respectively but the ON/OFF current ratio (at $V_G=40V$) remained unchanged. When devices were encapsulated with a 1 µm film, parylene coating pressed metallic tubes at the metal-CNT interface and hence fixed their position and also densified the loosely attached bundles, and created multiple conducting paths between source and drain electrodes which drastically increased both ON and OFF currents of the transistor. As a result, an upward shift in the transfer characteristic was observed after passivation, but no noticeable change in the width of hysteresis was found (Figure 6.3b).
Figure 6.3: Effects of parylene-C passivation in the electrical characteristics of a transistor in which more metallic carbon nanotubes still remained in the channel even after the current induced electrical breakdown. (a) The percentage of change in resistance, and ON and OFF current after passivation. The two terminal contact resistance (measured at $V_G=-40$ V) and the ON current (measured at $V_G=-40$ V) of the devices increased by more than 13%, and more than 53% increase in OFF current (measured at $V_G=40$ V) was also noticed in all devices. (b) The electrical characteristic of device 1 after passivation showed 40.04% and 63.4% increases in the ON and OFF currents. The two terminal contact resistance measured at $V_G=-40$ V resulted 34.09% drop for this device but the hysteresis width and ON/OFF current ratio remained unchanged. When devices were encapsulated with thin 1 µm parylene film, it fixed the position of the metallic tubes and also densified the loosely attached bundles, and created conducting metallic paths between source and drain electrodes which significantly increased both I_{ON} and I_{OFF} of the TFT. Accordingly, an upward shift in the transfer characteristic was observed but no noticeable change in the H_W and ON/OFF ratio was found after parylene passivation.

Hysteresis is not a desirable effect for CNT based electronic device applications and hence needs to be eliminated/minimized. A thinner encapsulation coating is also desirable for flexible devices to preserve their flexibility while maintaining the quality. Thus the barrier property of a thin 1 µm parylene-C passivation film must be investigated.
in high vacuum to ensure the conformal and pinhole free deposition. Lam et al. [193] have reported that submicron parylene-C film (20-50nm) deposited using commercially available coaters (PDS2010) is porous, and does not guarantee pinhole free coating. To minimize hysteresis and evaluate the quality of the thin parylene coating, the electrical properties of CNTFETs in high vacuum before and after encapsulation was next investigated. I first studied the reduction in hysteresis width of transistors by treating TFTs for 19 hours in high vacuum prior to 1 μm parylene deposition. Then we examined the thin (1 μm) parylene-C passivated TFTs in vacuum. The I-V measurements obtained from these experiments are shown in Figure 6.4. Initially, when the SWNTs were assembled via DEP, metallic tubes were removed by current induced breakdown and then transistor characterization were measured in an ambient environment.

![Figure 6.4: Suppression of gate hysteresis width and pinhole free coating of 1 μm film test results. After DEP assembly and subsequent I-V measurement in ambient environment TFT showed $R_{ON} = 172.3$ KOhm, $I_{ON} = 6.02$ μA and $H_W = 44.3$ V, respectively. Next transistor was treated in high vacuum (4.0×10^{-7}) for 19 hours and then](image_url)
immediately transferred to parylene deposition chamber. After 1 µm parylene-C passivation, transfer characteristics were measured again in ambient environment which resulted $R_{ON} = 371.4$ KOhm, $I_{ON} = 2.89 \mu$A and $H_W = 33.5$ V, respectively. After 19 hours in high vacuum, R_{ON} increased by 115.5% which reduced I_{ON} by 52% from their initial value, and the hysteresis width is suppressed by -10.8V. Moreover, the transfer characteristic curve shifted leftward which resulted in a $V_{TH} = -20$V and decrease in I_{OFF}. The reduction in the turn ON resistance and suppression of gate hysteresis width are caused by desorption of oxygen and water molecules after exposing to high vacuum. The shift in the transfer characteristic curve and a decrease in I_{OFF} are caused due to increase in electron density after oxygen molecules were removed in vacuum. After 9 hours at 2x10^{-5} Torr in Janis ST-500 electrical probe station, I-V measurement showed no noticeable change in the transfer characteristic from that of after 1 µm parylene-C passivation. After 28 hours in vacuum, I_{DS}-V_G was measured and again no significant changes in the transistor properties were recorded. A thin 1 µm parylene-C encapsulated TFTs showed stable I-V results after 28 hours in high vacuum and demonstrated good barrier property.

The TFT displayed R_{ON} of 172.3 KOhm, I_{ON} of 6.02 µA, V_{TH} of -10 V and hysteresis width of 44.3 V, respectively. After I-V measurements, the transistor was treated in high vacuum (4.0x10^{-7}) for 19 hours and then immediately transferred to the parylene deposition chamber. During parylene deposition, parylene-C dimer is pyrolized into monomer and then gets deposited on the sample at room temperature in vacuum (10^{-3} Torr). This pyrolyzation process lasted for 1 hour and 20 minutes where the CNTFETs were under vacuum (1 mTorr) during this process, and finally 1 µm parylene-C polymerization was completed in 28 minutes. After passivation, transfer characteristics were measured again in ambient environment where we found an R_{ON} of 371.4 KOhm, I_{ON} of 2.89 µA and hysteresis width of 33.5 V, respectively. It was observed that after long high vacuum treatment, R_{ON} increased by 115.5% which reduced I_{ON} by 52% from their initial values, and the hysteresis width was suppressed by -10.8 V. Furthermore, the transfer characteristics curve shifted towards left which resulted a V_{TH} of -20V and a decrease in I_{OFF}. The reduction in the turn ON current is caused by desorption of oxygen
molecules in high vacuum. The oxygen molecules adsorbed on the sidewalls of CNTs and/or at the CNT-dielectric interface were removed during exposure to high vacuum for 19 hours. Desorption of oxygen molecules from the CNTs resulted in withdrawal of more holes causing the transistors to become less p-type doped. Hence a significant reduction in the channel conductance of the transistors from their initial values was observed. In addition, the removal of water molecules and other trapped charges in high vacuum suppressed the gate hysteresis of the TFTs by -10.8 V but did not fully eliminate it. The water molecules are very difficult to permanently remove in such vacuum condition alone, and it usually requires much longer annealing times under high vacuum to reduce more or completely eliminate hysteresis [191, 212]. Other trapped charges from parylene-SWNT interface, ionic molecules and surfactants may still be present and could also attribute to the remaining hysteresis behavior. The shift in the transfer characteristic curve is caused due to increase in electron density after oxygen molecules were removed in vacuum. Lin et al. [191] and Kim et al. [212] also observed a reduction in I_{ON}, shift in transfer characteristic curve and suppression of hysteresis width when non-encapsulated CNTFETs were treated in high vacuum. In Figure 6.2b, the transistors exhibited no change in their hysteresis width after a 1 µm parylene-C passivation. The commercially available parylene coater such as PDS2010 which was utilized for these experiments can provide vacuum levels down to 10^{-3} Torr. The water molecules are very difficult to remove in such a short time (1 hour 20 min) in low vacuum (1 mTorr) conditions, and they require long hours of pumping in high vacuum (eg. 10^{-7} Torr) such as seen in Figure 6.4. Furthermore, the transfer characteristics of the TFT in Figure 6.2b showed 12.43% increase in I_{ON} current due to fixing the CNTs in position onto metal
electrodes and densification of nanotubes after a 1 μm parylene-C coating. Even though the device was under vacuum (10^{-3} Torr) for 1 hour and 20 minutes before parylene deposition has started I did not notice any reduction in I_{ON}. It could be that short term low vacuum treatment was not long enough to desorb oxygen molecules from the CNT transistor, or the effect of parylene-C encapsulation in improving the metal-CNT contact and densification negated the outcome from oxygen being removed from CNTs.

After 1 μm parylene-C encapsulation and subsequent I-V measurement in ambient environment, the devices were loaded into a Janis ST-500 electrical probe station to conduct electrical characterizations in high vacuum, and pinhole free behavior of a thin (1 μm) parylene-C coating was next investigated. Machine was pumped down for 9 hours at 2×10^{-5} Torr, and then I-V measurements were performed. As seen in Figure 6.4, no noticeable changes in the transfer characteristics were observed from that of after 1 μm parylene-C passivation. After 28 hours in vacuum, I_{DS} was measured where the V_G was swept from -40V to 40V (Figure 6.4) and showed that the electrical properties of the CNTFET remained unchanged. Thus, the electrical characterization of thin 1 μm parylene-C packaged TFT is very stable even after 28 hours in high vacuum and demonstrated that the 1 μm parylene-C film provides a pinhole free coating layer.

Finally, I studied the changes in the transistor properties of these devices after deposition of different thickness of parylene-C film. To preserve the flexibility of the devices, thinner coating layers are preferred since the rigidity of a flexible film is proportional to the cube of its thickness. Accordingly, I used parylene-C films with two different thicknesses (1 μm and 3 μm). After DEP assembly and the electrical burning breakdown process, I measured the I-V characteristics of the transistors using a
semiconductor parameter analyzer (HP4155A) at ambient room temperature and atmospheric pressure. After encapsulation (1 µm and 3 µm), the electrical properties of the CNT FETs were remeasured and compared with the values obtained before encapsulation. Figure 6.5 and 6.6 summarize the transfer characteristics of these devices before and after parylene-C passivation. Both devices (Figure 6.5 and 6.6) displayed a significant gate hysteresis before and after passivation between forward (V_{GF}) and backward (V_{GB}) sweeps of the gate voltage. As discussed before this phenomenon is often observed in CNT based transistors, and it is attributed to charge injection from nanotube at large gate voltages, water molecules, trapped charges at parylene-SWNT interface, other trapped charges from solution processed CNTs, and contamination originating during the fabrication of the device.

For the CNT TFTs with a 1 µm thick parylene-C coating, the two terminal resistance (measured at $V_G = -40V$) was increased by 50.3%, whereas the ON current of the device (measured at $V_G = -40V$) was reduced by 34.4% from their initial values. The hysteresis width before passivation (H_{WB}) between forward (V_{GF}) and backward (V_{GB}) gate voltage sweep is defined as the difference between P_2 and P_1 ($H_{WB} = P_2 - P_1$) where P_2 and P_1 are backward and forward gate voltages of the TFT and is shown in Figure 6.5. The gate hysteresis width before encapsulation was 47.5V. After the 1 µm parylene-C coating, the transistor showed a gate hysteresis width of 43.75V ($H_{WA} = P_4 - P_3$). The hysteresis width was reduced by -3.75V after the deposition of 1 µm parylene-C passivation layer. The change in hysteresis width (ΔH_W) is the difference between the hysteresis width after (H_{WA}) and the hysteresis width before (H_{WB}) parylene-C
encapsulation, \(\Delta H_W = H_{WA} - H_{WB} \), respectively. The ON/OFF ratio and the threshold voltage \((V_{TH}) \) did not change after the 1 \(\mu \)m parylene-C passivation.

The nanotube transistor encapsulated with a 3 \(\mu \)m thick parylene film displayed a similar electrical behavior as that of the device with a 1 \(\mu \)m thick parylene passivation. Figure 6.6 displays the transfer characteristics of an SWNT TFT measured before and after the 3 \(\mu \)m thick parylene-C encapsulation. After the 3 \(\mu \)m parylene deposition, the two terminal resistance (measured at \(V_G = -40V \)) of the TFT was increased by 17\%, and the ON current of the device was decreased by 13.7\% from their initial values, respectively. The TFTs had an \(H_{WB} \) of 49V and \(H_{WA} \) of 44V where the gate hysteresis width was reduced by -5V after the 3 \(\mu \)m parylene coating. No significant change in the \(V_{TH} \) and ON/OFF ratio was observed after the 3 \(\mu \)m parylene-C deposition.

The changes in the transfer characteristics of TFTs observed in Figure 6.5 and 6.6, such as the increase in the two terminal resistance and the decrease in the on current were caused by the desorption of oxygen molecules from vacuum during polymerization of parylene-C. During the deposition of parylene films, the devices were exposed to low vacuum levels (~2 hours and 15 minutes) where the oxygen molecules adsorbed on the side walls of CNTs were removed. This includes parylene machine pump down time of 1 hour, and parylene-C pyrolization process time of 1 hour and 15 minutes, respectively. Desorption of oxygen molecules resulted in withdrawal of holes from the CNTs reducing their doping levels and making them less p-type. The reduction in p-doping of SWNTs resulted in a reduction in the channel conductance and a decrease in the ON current of the transistors was observed after their encapsulation with parylene films. In addition, the suppression of water molecules and other trapped charges in vacuum reduced the gate
hysteresis widths of these devices, but did not fully eliminate them. As mentioned before, the parylene coater used in these experiments was PDS2010 which has vacuum levels of about 10^{-3} Torr. The water molecules are very difficult to remove at these low vacuum levels, and their removal requires long annealing times under high vacuum conditions (eg. 10^{-7} Torr) to further reduce or completely eliminate hysteresis. Lin et al. [191] and Kim et al. [212] observed similar changes in transfer characteristics and suppression of hysteresis width when non-encapsulated CNT FETs were measured in vacuum. Moreover, other trapped charges from the parylene-SWNT interface, ionic molecules and surfactants may still be present and could contribute to the remaining hysteresis.

Figure 6.5: Transfer characteristics of the SWNT TFT measured before and after 1 µm parylene-C deposition measured at $V_{DS}=1$ V. CNTs were exposed to vacuum (1 mTorr) for 2 hours and 15 minutes prior to the parylene-C polymerization.
In conclusion, I demonstrated a parylene-C passivation process for encapsulating SWNT thin film transistors on flexible/rigid substrate, and studied the effect of passivation on the electrical properties of these devices. The 1 \(\mu \)m parylene-C passivation (pyrolysis time of 1 hour and 20 minutes) densified carbon nanotubes and fixed their position on metal electrodes which resulted in more than 10% increase in the ON current of the transistors. No noticeable change in \(V_{TH} \), ON/OFF current ratio, and \(H_W \) was observed after a 1 \(\mu \)m parylene passivation coating. When unencapsulated TFTs were exposed to high vacuum for 19 hours, a 52% reduction in the \(I_{ON} \) was observed and the gate hysteresis width was suppressed by -10.8 V which was caused by the desorption of oxygen and water molecules from CNTs. Furthermore, removal of oxygen molecules from CNT surface and CNT-metal interface in high vacuum caused an increase in...
electron density in CNTs, and resulted a shift in the transfer characteristic curve to leftward and a decrease in \(I_{\text{OFF}} \). The transistor characteristics of 1 \(\mu \text{m} \) parylene-C packaged TFT remained unchanged after 28 hours in high vacuum exposure and indicated that the 1 \(\mu \text{m} \) parylene-C film is a good barrier for CNTFETs. The results from the CNT transistors that were encapsulated with 1 \(\mu \text{m} \) and 3 \(\mu \text{m} \) thick parylene-C coatings, demonstrated similar behaviors. This indicates that the parylene encapsulation thickness can be adjusted based on the specification of the devices. For example, thin parylene coating can be applied for flexible devices to maintain their flexibility, whereas the thicker parylene-C can be utilized to protect CNT devices from the hazardous body fluids environment for implantable device applications. Thus, parylene-C, being a pin-hole free coating deposited at room temperature may serve to be a promising technology for environmental protection of carbon nanotube based devices.
Chapter 7

Biostability of Parylene-C Encapsulated Carbon Nanotubes Flexible Transistors

7.1 Introduction

Biomedical micro implants are used in neural prostheses to restore body functions after paraplegia by means of functional electrical stimulation (FES). FES gives the possibility to neurologically rehabilitate, re-establish and reconstitute different organs, which are irreparably damaged. In FES, human neurons or muscles are electrically excited in order to affect muscles or a sensory organ like vision or hearing. This is accomplished by current or voltage pulses across an electrode array. One of the specific examples of an implantable system under development is the retinal implant by Wyatt and his colleagues [230] as shown in Figure 7.1 and Humayun’s group [231]. In the human eye, there are about 2×10^8 receptors which can determine about 4×10^5 pixels. Overall, the total number information over all sensory organs of the human body has been estimated to be about 10^{10} bits/sec. These examples illustrate that an incredibly large number of electrodes are necessary to stimulate sensory organs. In current technology, either each electrode is connected via a separate cable to the implantable electronics and or relatively thick and stiff silicon based circuitry is used which can cause
a problem given limited space. Moreover, these percutaneous connectors are likely to cause infections during chronic use.

The traditional implantable devices have been realized with standard silicon circuitry which is a rigid material and has been encapsulated inside large and bulky packages, the well known examples including pacemakers and defibrillators. The technologies utilized to build these systems do not meet the needs of emerging implantable systems. For instance, for neural applications, it is necessary for the electrode array to be flexible and lightweight. The flexible electrodes minimize tissue damage caused by micromotion between the tissue and the electrode after implantation [232-234]. For a tissue that has a curved contour, such as the retina, flexible electrodes can conformally cover the surface area and hence ensure good contact. Furthermore, to establish an active interface with biological systems, the use of nanomaterials with unique electronic properties and sizes comparable with biological structures of interest has been explored. For instance, to record from spontaneously beating embryonic chicken hearts, Lieber and colleagues have recently utilized nanowires on a flexible substrate [235]. In addition, to eliminate wired connections from creating infections, these implantable devices must be fully integrated inside the human body.

Figure 7.1: Bionic eye implant (Boston).
For a device to operate in a living system, it needs to be protected from the harsh environments inside. That is, these functional devices must be stable for long term inside biological medium (biostable). Second, the living environment also needs to be isolated from the device so that the device does not cause harm to the tissue. Hence, the implantable materials need to be fabricated from or encapsulated with biocompatible materials. For example, encapsulation materials such as silicone, polyimide, Si$_3$N$_4$, parylene, a-SiC, and diamondlike carbon have been reported for implant applications [236-241]. One of the materials, that is flexible, biocompatible and fits most of the needs for implantable systems, is parylene-C, yet there is very little research conducted on nanomaterials based devices using parylene-C. Parylene-C is one of the well established USP grade VI biocompatible materials. It has been traditionally used as an encapsulation material [80], coating biomedical implants [77], yet its applications for flexible electronics though promising are rare. For biomedical applications, specifically for in vivo cases, a conformal coating of parylene-C is required to create a surface that is acceptable for the living tissue.

Most current flexible electronics are made using organic molecules which tend to have limitations in performance i.e. have low carrier mobilities [80]. Second, the substrates utilized in current flexible devices are limited in properties. For instance the polydimethylsiloxane (PDMS) films are bulky, the materials that are commercially available in sheet forms, ie polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are challenging to fabricate devices onto, and other materials such as polyimides absorb moisture and hence are not appropriate for humid environments or aqueous solutions. Among the polymers suited for flexible substrates, parylene-C has numerous
attractive features. It is lightweight, stress-free, optically transparent, and mechanically strong material. These attractive properties make it a very promising material as a flexible substrate [242]. Furthermore, single-walled carbon nanotubes (SWNTs) with their unique physical, electrical and mechanical properties are being considered as a potential replacement for existing semiconducting materials in flexible electronics [35, 39]. Thus, the parylene-C together with carbon nanotubes is an attractive area of research for realizing high performance and highly flexible devices for biomedical applications.

Previously, I have reported parylene-C packaged SWNT thin film transistors (TFT) where parylene was utilized as substrate, dielectric and encapsulation material [185, 223]. Devices sandwiched in between parylene films displayed ultraflexibility and were protected from environmental contaminations. Moreover, the electrical characteristics of TFTs after parylene-C coating remained unchanged compared to when before passivation. In this chapter, the biostability of thin parylene-C encapsulated single walled carbon nanotube thin film transistors are demonstrated. Devices were sandwiched in between parylene films and then immersed in saline solution at 37°C for 42 days. The electrical characteristic of 1 µm parylene-C passivated transistors after soak experiments showed no significant changes in their properties comparing to that of after passivation.

7.2 Device Fabrication and Experimental Setup

The fabrication of flexible SWNT thin film transistors is briefly summarized in Figure 7.2a. A 10 µm thick parylene-C layer was first deposited on an oxidized silicon wafer at room temperature. Next, aluminum gate electrodes (1500 Å) were created using conventional optical lithography and wet etching. Then, a 1 µm thick parylene-C gate
dielectric layer was deposited. Subsequently, source and drain electrodes (Cr/Au, 5/150 nm) were sputter deposited and patterned by wet etching. SWNTs were next assembled across the source and drain electrodes by utilizing the dielectrophoretic (DEP) assembly process (Figure 7.2b). After DEP assembly, transistor characteristic was studied using a semiconductor parameter analyzer (HP4155A) at ambient room temperature and atmospheric pressure. Finally, a 1 µm parylene-C encapsulation layer was deposited, and contact pads for probing were opened (Figure 7.2a). After opening contacts parylene-C film embedded with TFTs was peeled off from the wafer and then transistor properties were remeasured. Figure 7.2c shows the optical photograph of fabricated TFTs wrapped around the wrist. The I-V measurement showed p-type transistor behavior and the transfer characteristic measured from a sample device for V_{DS} ranging from 1V to 0V is shown in Figure 7.2d. The detailed information of fabrication of parylene-SWNT transistors can be found was previously reported [218, 223].

After I-V measurement TFTs sandwiched between parylene films were immersed in saline solution and their biostability was next studied. Before soaking the beaker containing saline solution was placed on a hotplate and then the temperature was ramped to 37°C. Next the magnetic stirrer was set up to 300 rpm which ensured equal distribution of temperature, and the fluid temperature was monitored via external thermal couple connected to the hotplate. After the medium temperature has reached 37°C parylene packaged thin film transistors were soaked in saline solution for seven days. Figure 7.3 shows the snap shot of the experimental setup for soak testing. Next parylene film was removed from saline, rinsed in deionized (DI) water for 15 minutes and the I-V characteristic was measured. Subsequently, devices were immersed in saline solution
and the above experimental steps were repeated for 42 days. The saline solution was changed every seven days to maintain the concentration of salt due to evaporation. I have utilized the saline solution (0.9% sterile solution of sodium chloride) as the biological medium in our experiment because the concentration of salt is equal or similar to the concentration of salt in the human body fluids.

Figure 7.2: (a) A cross section of parylene-C passivated TFT after opening the contact areas, (b) The high resolution SEM micrograph of assembled SWNTs between the source and drain electrodes, (c) Optical photograph of TFTs after peeled off from a 3 inch wafer, and (d) Transfer characteristic of a transistor after 1 µm parylene-C encapsulation.
7.3 Results and Discussion

Figure 7.3: (a) A snap shot of the experimental setup during soak testing.

Figure 7.4 Transfer characteristics of the parylene-C encapsulated FETs measured before and after 1µm parylene-C coating, and after soak testing measured at $V_{DS}=1V$.
The transfer characteristic of a sample TFT (same device in Figure 7.2d) after 42 days of soaking is shown in Figure 7.4. Before 1 µm parylene encapsulation the CNT transistor exhibited ON/OFF ratio of $\sim 2 \times 10^2$, threshold voltage (V_{TH}) of -20V. After 1 µm parylene-C deposition the ON current (measured at $V_{GS} =$-40V) of the transistor increased from 26.2 µA to 29.4 µA where the percentage of increase was 12.43%. Parylene has conformally coated around carbon nanotubes and has pressed them down to the metal electrodes. Thus, thin parylene film not only acted as a barrier to CNTs but has also fixed the nanotube position on the electrode. Hence, TFTs showed an increase in the ON current but no changes have been observed in the other transistor characteristic such as V_{TH} and OFF current [185]. Moreover, the desorption of water molecule at the metal-SWNT interface could have also possibly contributed to increase in the ON current which was observed after thin parylene coating. During parylene deposition it is possible that the water molecules at the interface were desorbed and resulted in slight increase in the work function of the source/drain electrode than that of when the water molecules were adsorbed on the Au contacts [224].

After every seven days of soak experiment transistor properties were measured and compared with that of previously recorded measurements. The TFT in Figure 7.4 displayed turn ON current of 28.8 µA, 28.5 µA, 28.7 µA, 28.4 µA and 29.5 µA after 7, 14, 21, 28 and 42 days of soak testing, respectively. Other transistor characteristics remained unchanged (Figure 7.4). The percentage of change in the ON current, $\left[\frac{(I_{ON} - I_{0,ON})}{I_{0,ON}}\right] \times 100\%$, after 42 days of soaking for sample six devices is summarized in Figure 7.5. Here I_{ON} and $I_{0,ON}$ represent measured ON current after soak test, and initial
ON current after 1 μm parylene coating. The device 6 (same device in Figure 7.4) showed -3.46% to 0.4% change in the ON current from its initial value after soaking. The device 5 showed maximum increase of 4.86% and maximum decrease of 7.58% in the ON current from its initial value.

It was observed from the experiments that the change in the ON current was random and was independent of number of days that the devices were immersed in saline. These changes in the turn ON current could have been possibly caused by human error during electrical probing and/or adsorption/desorption of gases, moisture and other contaminations in the environment from the contact areas. Gas molecules adsorbed on the metal contact areas act as a scattering centre for conduction electrons and hence

![Figure 7.5 The percentage of change in the ON current of parylene-C packaged TFTs after soak testing.](image)

108
increase the electrical resistivity of these metals [226]. Due to random adsorption/desorption of molecular species from the environment random variation in the ON current was observed in the TFTs. It should also be noted that threshold voltage of these devices are slightly higher for implant applications yet thin gate dielectric and optimized FET design will allow the realization of low voltage devices. Parylene-C (1 µm) passivated devices displayed stability in their I-V characteristic after 42 days of soaking in saline at 37°C. The long term biostability of parylene packaged TFTs for different parylene encapsulation thicknesses needs to be studied via accelerated life time testings. These issues will be reported in our future work.

In conclusion, the biostability of 1 µm parylene-C passivated TFTs in saline solution is demonstrated. The I-V characteristic of these devices remained unchanged after 42 days of soak experiments. This parylene-C packaged CNT transistor technology will find applications in areas that require high performance and highly flexible biocompatible devices such as neural prosthetic devices.
Chapter 8

Vertical and High Density SWNTs Transistors

8.1 Introduction

The continuing demand for more functionality and higher performance is driving the momentum to realize more transistors in a given area. This demand has traditionally been met through technological advancements primarily through scaling of transistor dimensions. It is predicted that the limits to scaling will be reached within the next decade and alternative approaches for scaling are needed. Carbon nanotubes with their miniature size and attractive electrical properties appear as a strong candidate for future transistor technology. Semiconducting nanotubes are direct bandgap semiconductors with $E_G \approx 0.8/D$ (eV), where D is the nanotube diameter in nanometers. With typical diameters of 1-2nm, the single-walled carbon nanotubes have resulting bandgaps suitable for room temperature electronics. Low field transport is near ballistic with mobilities as high as $\sim 100,000$ cm2/V-s. The direct bandgap also means that optical devices are also possible. Since there are no dangling bonds in CNTs, surface scattering can be expected to be negligible. With these attractive properties,
carbon nanotube based field effect transistors have been investigated as one of the alternatives to silicon based technology. [247, 248]

The transfer characteristics of the CNTFETs have been optimized with approaches utilizing a shorter channel (20 nm) and a high-k dielectric. [34, 249] In addition to back gate approaches, Javey and colleagues have demonstrated a self-aligned top gate approach. [250] An all-Carbon transistor, utilizing carbon nanotubes as the gate and the conducting channel, has also been realized by Chiu et al. [251] as one of the possible means of creating high density nanoelectronics. The planar electrode based CNTFETs have certain limitations which result in lower current densities and large parasitic gate capacitances. [252]

In sharp contrast to planar architectures, the vertical arrangement of carbon nanotube transistors has been proposed as another means to achieve large scale, high density realization of nanoelectronic circuits. As a first step towards realizing this goal, Duesberg et al. have demonstrated Catalytic Chemical Vapor Deposition (CCVD) technique, a high temperature growth technique, and grew a single MWNT inside a 20nm hole. [253] Furthermore, utilizing a similar CCVD method, Choi and colleagues have achieved ultra high density nano transistors. [254] Chen et al. were able to demonstrate a high density (10^8/cm2) vertical nanowire transistor. [249] A similar high temperature based growth mechanism was utilized to demonstrate Si and ZnO nanowire vertical field effect transistor [255, 256] making this a very exciting area of research. In this chapter I presented a hybrid technique combining both bottom-up dielectrophoresis and top-down microfabrication techniques to enable room temperature integration of SWNTs into three dimensional architectures. Utilizing this 3D microplatform, a novel 3D Field Effect
Transistor based on SWNTs is next demonstrated. This 3D CNTFET technology allows the realization of vertical transistors and has the potential for large scale ultra-high density nanoelectronic circuits.

8.2 High Density Vertical Assembly of Single-Walled Carbon Nanotubes

Three dimensional arrangements of CNTs have been realized and being studied as an attractive alternative to that of two dimensional planar techniques since they offer a means for large scale, higher density realization of novel nanoelectronic devices [253, 257]. Recently, three dimensional single-walled carbon nanotube structures utilizing porous alumina nanotemplates, [143] and field assisted assembly [213] have been demonstrated. Compared to other assembly methods, the dielectrophoretic assembly method provides placement of SWNTs at the desired locations with alignment. [171, 214] Moreover, the DEP assembly process is low temperature, high yield and is amenable to wafer scale [215, 216] fabrication, and it is shown that it can provide control [172] over the number of assembled nanotubes.

In this section a hybrid technique combining both bottom-up dielectrophoretic assembly and top-down microfabrication techniques is realized to enable room temperature three dimensional vertical assembly of SWNTs. Carbon nanotubes were deposited utilizing dielectrophoretic (DEP) assembly technique with a 98.7% yield. The amounts of nanotubes assembled across the 3D electrode were controlled by scaling the dielectrophoretic force, which was done by varying the magnitude of the applied voltage.
and the characteristic distance between the electrodes. The density of the assembled nanotubes was proportional to the applied voltage. It was also observed that when a higher voltage was applied between the 3D electrodes more nanotubes were assembled around the edges of the tip of the electrode and also formed thicker bundles. The scanning electron micrograph (SEM) images revealed that by adjusting the height of the 3D microelectrodes and the overlap between them allows control over bundle size, number of bundles and effective length of the active sensing elements (channel). The contact resistance of the 3D devices was reduced by 20% on average from their initial values after the thermal annealing process. Moreover, the encapsulation of these 3D assembled devices using a conformal pin-hole free parylene layer resulted in 12-45% decrease of the total resistance.

8.2.1 Fabrication of 3D Microplatform

The fabrication process, as illustrated in Figure 8.1a, starts with the deposition and patterning of the first Cr/Au electrode layer (200 Å/1500 Å) by a lift-off process on an oxidized silicon wafer (Figure 8.1a (i)). Then a thin parylene-C dielectric layer was deposited at room temperature. Next, the second metal layer (Cr/Au 200Å/1500Å) was deposited and patterned using lift-off technique (Figure 8.1a (ii)). These two metal layers form the three dimensional electrodes for assembling the SWNTs. Utilizing the second metal layer as a mask, the parylene-C layer with an inductively coupled plasma (Plasma therm 790) reactor using O₂ plasma (Figure 8.1a (iii)) was then etched. After fabrication, dielectrophoretic assembly was utilized to assemble SWNTs between the 3D electrodes (Figure 8.1a (iv)). Finally, a thin layer of parylene-C (1.0 μm) was deposited as the
encapsulation layer and the contacts were opened using the ICP etcher for electrical measurements (Figure 8.1a (v)). Refer Appendix D for detailed process flow for the fabrication of 3D microplatform. The 3D schematic drawing of vertically assembled SWNTS after DEP is shown in Figure 8.1b. The scanning electron microscopy images of fabricated single and multi (eight) finger electrodes are shown in Figure 8.2, where these electrodes have a vertical separation of 1µm and an overlap distance of 3 µm, respectively.

SWNTs in a CMOS grade aqueous solution procured from Nantero Inc. was utilized for DEP assembly process. The average length and diameter of these SWNTs were 2µm and 1.25nm, respectively. The weight concentration of the SWNT in this aqueous solution was 0.046% while the pH of the supplied solution was 6.5. The original SWNT solution was first sonicated for 30 minutes with an ultrasonic cleaner (Branson B-22-4). Subsequently, it was further diluted to the desired CNT concentration with deionized (DI) water and again was sonicated for 2 hours prior to the DEP assembly.
Figure 8.1: (a) Fabrication process for the micromachined 3D electrode and (b) three dimensional schematic of vertically assembled SWNTs after DEP assembly.

Figure 8.2: Microplatforms for 3D assembly: (a-b) SEM micrographs of the fabricated single electrodes, and (c-d) SEM and Zygo images of multi (eight) electrode platforms
where these electrodes have a vertical separation of 1µm and an overlap distance of 3µm, respectively.

8.2.2 Dielectrophoretic Assembly of 3D-SWNTs and Two Terminal Electrical Measurements

In the first set of experiments, the SWNT solution was diluted into 1:1000 with DI water, and assembly experiments were conducted at a frequency of 10 MHz and voltage of 10 Vp-p for 20 seconds. Devices were inspected under an SEM and two terminal I-V measurements were performed to verify the electrical continuity between the electrodes. 76 devices were fabricated using these DEP parameters and their assembly yield is summarized in Figure 8.3. A ‘good assembly’ is defined to be the case where there is an electrical path between the top and the bottom electrodes, which was confirmed by both I-V measurements and SEM imaging which revealed that the SWNT bundles formed a bridge between the 3D microelectrodes and that there was no damage to the electrodes. Among the 76 devices, 38 devices resulted in good assembly, 5 devices failed (I-V measurement showed an open connection) and in the other 33 devices, the electrodes were damaged, which resulted in a yield of 50%. SEM images taken from the 33 destroyed devices revealed that the nanotubes clustered together and formed agglomerated structures on the electrodes and/or the top metal electrodes peeled off from the chip (Figure 8.4). During the assembly of these 33 devices, it was also observed that the initial formation of bubbles on the surface of the 3D assembly area was followed by the destruction of the electrodes. We believe that the damage to the electrodes was caused by the electrolysis of DI water and also possibly parylene peel off due to joule
heating. Electrolysis at the electrode surface occurs at low frequencies and high voltages [258]. Dong et al. [259] observed similar bubble formation which eventually destroyed electrodes at a frequency lower than 50 kHz, and reported that the electrochemical interaction can be avoided at the electrode/solution interface by applying high frequency (1-10MHz) field.

For the next set of assembly experiments, the SWNT solution was diluted to a ratio of 5:1000 with de-ionized water and assembly was performed with an electric field of 2 Vp-p and a frequency of 10 MHz for 1 minute, and 75 devices were made using this recipe. With this new recipe, we have found that our yield went up to 98.7% (74 devices

![Graph](image)

Figure 8.3: The 3D dielectrophoretic assembly yield from old (10MHz, 10Vp-p, time=20sec, CNT concentration=1X) and new optimized (10MHz, 2Vp-p, time=1min, CNT concentration=5X) recipes. 3D electrodes with a spacing of 1µm and an overlap distance of 3µm between top and bottom electrodes were utilized in these experiments.
Figure 8.4: SEM images of destroyed 3D electrodes after DEP assembly using old recipe due to electrolysis of DI water and/or parylene peel off from joule heating. In (A) CNT solution aggregated and formed agglomerated structure and (B) top electrode peeled off from the chip.

had good assembly whereas one device did not) (Figure 8.3). All 74 devices were inspected under an SEM and it was observed that none of the electrodes were destroyed. In both assembly processes, 3D electrodes had a width of 3µm, an overlap distance of 3µm, and a vertical separation of 1µm. The initial 3D DEP assembly parameters (10 Vp-p, 10 MHz) caused electrolytic dissociation due to the high electric fields which formed bubbles on the surface and eventually destroyed the electrode. It was experimentally observed during the second assembly recipe (2 Vp-p and 10 MHz) that the use of an assembly voltage with a smaller amplitude avoided electrolysis and the resulting bubble formation. The use of higher assembly voltages with higher amplitudes resulted in higher electric fields, which induced temperature rise in the fluid due to joule heating, where the temperature increase (ΔT) is given by

$$\Delta T = \frac{\sigma V^2}{2k}$$ \hspace{1cm} (8-1)
where σ and k are the electrical and thermal conductivity of the fluid, and V is the voltage applied between the electrodes. [258] The glass transition (T_g) temperature of parylene-C is around 90 °C. [146] When parylene-C is exposed to a high temperature (above T_g), it will experience high stress levels which is closer to the yield strength of the polymer film (55 MPa). Accordingly, the peeling of the top electrode which is above the parylene-C dielectric could also have been caused by the higher temperature generated by the higher electric fields.

Figure 8.5: FESEM image of SWNTs assembled between the top and bottom metal at 10 MHz. (a) SEM micrograph of the top view of the 3D assembled SWNT bundles at 10 V_{pp} (b) A high angle frontal SEM image of the SWNTs assembled at 10 V_{pp} connecting the top and bottom metals (c) A high resolution image of bundled SWNTs assembled at 5 V_{pp} (d) Side view of the assembled SWNT architecture assembled 5 V_{pp}.
SEM images of the assembled SWNTs are shown in Figure 8.5. Well organized, parallel arrays of SWNT bundles are assembled between the top and the bottom electrodes. Figure 8.5(a) is SEM micrograph of the top view of the 3D assembled SWNT architecture. The images show that all the assembled SWNTs (Figure 8.5(b)) are inclined at a specific angle to the surface. The experiments were also performed on multiple electrode structures connected to each other. The SEM micrographs show that the density of SWNTs assembled is uniformly distributed on all the fingers (Figure 8.5b,d) demonstrating the scalability of our assembly technique. Nanotubes were assembled around the edges of the tip of the top electrode. The distribution of the SWNTs along the edges of the top electrode is uniform.

Following the assembly, I-V measurements are conducted to ensure the connectivity between the electrodes. The I-V characteristics (Figure 8.6) of the assembled SWNT bundles demonstrated a linear behavior indicating the presence of an ohmic contact at the nanotube – metal interface. The measured two-terminal resistance between the two electrodes on a single finger device was as low as 389 Ω (Figure 8.6a) and the multielectrode device resulted 66 ohms (Figure 8.6b) when assembled using an applied voltage and frequency of 10 V_{pp} and 10MHz. Electrical measurements were conducted using HP4155 parameter analyzer at room temperature in atmosphere. The measured resistances of our 3D SWNTs are comparable to those reported [58, 154] for 2D SWNT architectures. The total resistance measured consists of the actual resistance of SWNTs, the contact resistances arising from probe-to-contact pad resistance and electrode-to-SWNT contact resistance.
Figure 8.6: Measured two-terminal resistance of 3D devices before and after parylene-C encapsulation using DEP assembly at 10V_{pp} and 10 MHz. After encapsulation the room temperature resistance dropped by (a) 12% (from 389 to 346 ohms) for a single electrode device and (b) where as for 3D multielectrode it went down from 66 to 36 ohms with 45% change in the resistance.
The amount of nanotubes assembled across the 3D electrode can be controlled by scaling the dielectrophoretic force. The magnitude of the DEP force scales by the following relationship [227]:

$$|F_{DEP}| \sim \frac{V^2}{L^3}$$ \hspace{1cm} (8.2)

where V and L are the applied voltage and the distance between the electrodes, respectively.

![Figure 8.7: Measured two-terminal resistance of the 3D single electrode devices. The amplitude of the AC electric field was increased from 1 to 10 Vpp at a frequency of 10 MHz which resulted exponential drop in the resistance with increasing voltage.](image)

The density of the assembled bundles can be controlled by varying the electric field. The nanotube density is found to be proportional to the applied voltage [57, 260] with higher fields creating denser nanotube attachments (Figure 8.5). As shown in Figure 8.7, the measured two-terminal resistance of single electrode 3D devices dropped
exponentially with increasing assembly voltage. When the voltage between the electrodes was increased more nanotubes were assembled around the edges of the tip of the electrode. The thicker bundle size of the assembled bundled SWNTs could have been possibly caused by the increased applied voltage. All assembly experiments were conducted at a frequency of 10 MHz, while the AC voltage between the top electrode and the bottom electrode was varied from 1 to 10 V_{pp}.

![Figure 8.8: A schematic drawing of the 3D assembly electrodes illustrating the Height (H) and Overlap distance (L), which can be varied to scale the DEP forces between the top and the bottom electrodes.](image)

We hypothesize that the number of assembled SWNT bundles can be controlled by adjusting the magnitude of the electric field, which can also be done by changing the distance between the electrodes. In the case of 3D electrodes, the spacing (H) and the overlap/separation distance (L) between the top and bottom electrodes were varied (Figure 8.8) to understand the interplay between the dimensions of the assembly platform and the number of assembled SWNT bundles.
Figure 8.9 shows a summary of assembly experiments where the vertical distance between electrodes (H) was varied from 269nm, 1,052nm, 2,085nm and 2,828nm with an overlap distance of about 3µm. As the distance between the electrodes was reduced, the electric field strength between the top and bottom electrodes increased significantly and caused the formation of thicker SWNT bundles. Moreover, it was also found that as the distance between the top and the bottom electrodes was changed, so did the incline angle and the length of suspended SWNTs bundles. It is evident from Figure 8.9a that the bundles are more inclined for smaller electrode separation (ie H=269 nm) than in the case of larger electrode separation (ie H=1,052nm) as seen in Figure 8.9b. The length of the

Figure 8.9: Adjusting the distance between the top and the bottom electrodes allows control over the magnitude of the electric field. The vertical distance between the 3D electrodes (thickness of the parylene-C layer) was varied from (a) 269nm, (b) 1,052nm, (c) 2,085nm and (d) 2,828nm where the overlap distance was kept at 3µm. It is evident from the above SEM images (a-d) that as the height was reduced the diameter and the angle of incline of the assembled SWNT bundles have increased. Moreover, the length of
the suspended 3D SWNTs decreased when the electrode height was reduced (this was more applicable to $H \leq 1\mu m$).

suspended nanotubes were also longer at $H=1,052$ nm whereas a small section of (shorter) tubes formed the bridge for the case where $H=269$nm. During the DEP assembly, the CNTs will align in the direction of electric field lines before assembling in between the electrodes. In other words, the vertical alignment and length of single bundles of SWNTs can be tuned by changing the electric field lines. In the case of a height (H) of 269nm, the shorter separation distance between the top and the bottom electrodes resulted in a stronger electric field which created a stronger DEP force and allowed the SWNT bundles to move more upright. Utilizing the eqn. (2), we have

<table>
<thead>
<tr>
<th>Height (nm)</th>
<th>Overlap (nm)</th>
<th>F_{DEP}</th>
<th>F_{nDEP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
<td>3,000</td>
<td>51.4</td>
<td>1162.5</td>
</tr>
<tr>
<td>1,052</td>
<td>3,000</td>
<td>0.86</td>
<td>19.45</td>
</tr>
<tr>
<td>2,085</td>
<td>3,000</td>
<td>0.11</td>
<td>2.49</td>
</tr>
<tr>
<td>2,828</td>
<td>3,000</td>
<td>0.044</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8.1: Comparison of dep forces for different microelectrode geometries. F_{DEP} is the calculated DEP force using eqn (2). F_{nDEP} is the normalized DEP force to the smallest value which is obtained at $H=2828$ nm.

calculated the approximate dielectrophoretic force for each height and the force corresponding to a height (H) of 269nm was about 1,162 times higher than the one present for $H=2,828$ nm (Table 5.1). Accordingly, shorter bundles were assembled with a steeper angle. In the other case, where the height was 1,052nm, the weaker electric field lines resulted in a less weaker dielectrophoretic force, and the force experienced by the nanotubes was not strong enough to realize a vertical assembly. SWNTs bundles...
aligning along the larger electric field lines created less inclined and longer suspended SWNT bundles assembled between the 3D electrodes. However, when the spacing was above 1µm, only a small section of bundled nanotubes were suspended near the bottom electrode and the rest followed the sidewall of the parylene-C dielectric which was caused by the weaker DEP force (Figure 8.9a,b).

The two terminal I-V measurements summarized in Figure 8.11 show an exponential decrease in resistance when the vertical separation (the height of the parylene-C thickness) between the electrodes was reduced. Similarly, when the separation (lateral) between the 3D electrodes was decreased from 2,702nm, 1,022nm, down to 117nm (electrodes had a vertical separation of 1µm), enhanced the dielectrophoretic force and caused more nanotube bundles to be assembled between the top and the bottom electrodes (Figure 8.10) and also the two terminal resistance of the 3D SWNT assemblies decreased exponentially (Figure 8.11). Furthermore, the top electrode which was 1,022nm away from the bottom electrode resulted in 7 SWNTs bundles between them (Figure 8.10a). We also found that increasing the overlap distance between the electrodes from 1,190 nm (Figure 8.10c) to 3,290nm (Figure 8.10d) also caused the increase in the number of assembled bundles from 20 to 30. A summary approximate DEP force values calculated using eqn. (2) are shown in Table 8.2 and confirms our SEM observations.

After a thorough SEM inspection on several 3D devices with a separation distance of 1µm or above, it was noticed that (looking from the bottom electrode) the section of the length of the assembled bundles followed the oxide surface and the remaining bent forward on to the top electrode (Figure 8.10a). The 3D electrode with a separation
distance of less than 1µm always formed bundles inclined where the angle of incline can be adjusted by controlling the height between the electrodes. In addition, the field strength is nearly uniform around the edge of the hemispherical tip at their respective height. When the top electrode begins to overlap with the first electrode, more SWNT bundles assembled around the tip of the electrode as seen in Figure 8.10.

Figure 8.10: The overlap distance between the top and bottom electrodes was changed from (a) 1,022nm, (b) 117nm, (c) 1,190nm (d) to 3,290nm. As a result, more SWNT bundles assembled around the edges of the hemispherical top electrode as shown in the SEM micrographs through of the 3D devices (a) to (d) which resulted in 7, 9, 20 and 30 bundles, respectively.

In summary, by controlling the spacing and the overall/separation distance between the 3D electrodes allow control in the angle, the bundle thickness, the suspended length and the number of assembled SWNT bundles around the edges of the tip of the top electrode.
Table 8.2: Comparison of DEP forces for different microelectrode geometries. \(F_{\text{DEP}} \) is the calculated DEP force using eqn (2). \(F_{\text{DEP}}^n \) is the normalized DEP force to the smallest value which was obtained at separation=2,702 nm.

<table>
<thead>
<tr>
<th>Vertical distance (nm)</th>
<th>Overlap (O) Separation (S) (nm)</th>
<th>(F_{\text{DEP}})</th>
<th>(F_{\text{DEP}}^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2,702 (S)</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1,022 (S)</td>
<td>0.34</td>
<td>8.1</td>
</tr>
<tr>
<td>1000</td>
<td>117 (S)</td>
<td>0.97</td>
<td>23.2</td>
</tr>
<tr>
<td>1000</td>
<td>1,190 (O)</td>
<td>1</td>
<td>23.9</td>
</tr>
<tr>
<td>1000</td>
<td>3,290 (O)</td>
<td>1</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Figure 8.11: Scaling the electrode geometry vs measured resistance. The two terminal resistances of the 3D SWNT devices exponentially decreased when the spacing and the overlap distance between the electrodes were reduced.

The formation of low contact resistance between carbon nanotubes and metal electrodes is essential for their application in nano devices/sensors. Thermal annealing has been demonstrated as one of the simplest methods to improve contact resistance in large scale. [147] After assembly, 3D devices were annealed at 90°C for 30 minutes to improve their contact resistance. The percentage in change in contact resistance for 7
devices for two different device geometries is summarized in Figure 8.12. The two terminal contact resistance decreased between 19-62% for devices with an overlap distance of 894nm, whereas an overlap distance of 5,484nm resulted in a reduction of 7-63%. On the average, a 20% decrease in the two terminal resistance from its initial value was recorded on most of the devices. After annealing, the devices were encapsulated with a parylene-C layer and contacts were opened for I-V measurements.

![Figure 8.12: The changes in the measured two terminal resistance of the 3D SWNT devices after thermal annealing at 90 °C for 30 minutes. Seven such 3D devices with two different geometries were utilized, and at least a 20% decrease in their contact resistance was observed in most of the devices.](image)

When the assembled SWNTs are encapsulated with a parylene-C layer, they continue to demonstrate a linear behavior but with a lower total resistance compared to the 3D SWNT architecture without the top parylene layer. As shown in Figure 8.6, single electrode device displayed 12.5% drop in the two-terminal contact resistance after encapsulation where as multi electrode demonstrated 45% drop from its origin value. The Parylene encapsulation layer acts as a protective barrier and also improves the two-
terminal contact resistance of the 3D nano-bridge. Carbon nanotubes are highly sensitive to a broad class of chemical vapors [59, 60]. Accordingly, to isolate the CNTs from the environment and also to prevent contamination we have encapsulated the with a thin and conformal Parylene-C layer. Furthermore, the deposition of the top Parylene layer secures the position of the CNTs and possibly presses them against the Au metal electrodes which improve contact resistance between the metal and the CNTs. It is also likely that the parylene encapsulation increases the number of CNTs contacting the Au metal and hence improves the two terminal resistance of the structure.

8.2.3 DEP Simulation

The approaches for controlled manipulation of nanoparticles include template-directed synthesis, [217] atomic [161] and scanning force microscopy [261] and nanorobotic manipulations. [262] But, these methods have low throughput and are not suitable for the production environment. DEP, coined by H. A. Pohl, [263] refers to the force exerted on a dielectric particle when it is subjected to a non-uniform AC or DC electric field. Depending on the dielectric properties of the particles and the medium, if the dielectrophoretic force acting on the nanomaterial directs the particles towards regions where the gradient of the electric field intensity is maximum, then it is referred to as positive DEP (PDEP). Furthermore, if the particles are directed towards regions where the gradient of the electric field intensity is minimum, then it is referred to as negative dielectrophoresis (NDEP). In our assembly experiments, we have utilized positive dielectrophoresis.
To gain a better understanding of the assembly behavior of the SWNTs during dielectrophoretic assembly process, we used FEMLAB multi-physics software (COMSOL) to simulate the electric field distribution around the micro-fabricated platform and the influence of the electric field on nanotube placement. The DEP force was calculated and compared with the viscous drag during the assembly process, which led to the predicted trajectory of the CNT. For simplification, we used a 2D model to explain the assembly mechanism. The geometry of the electrodes in the simulation software were defined considering the actual fabrication processes which results in a curvature in electrodes resulting from fabrication and the overhang induced by isotropic etching of the parylene resulting in an undercut. To determine the DEP force acting on the CNTs, the following equation was used [264, 265]

\[
F_{\text{dep}} = \frac{\pi}{6} r^2 l e_m \text{Re}\{K(\omega)\} \nabla E_{\text{rms}}^2
\]

(1)

\[
K(\omega) = \left(\frac{\varepsilon_p^* - \varepsilon_m^*}{\varepsilon_m^*} \right)
\]

(2)

where \(l\) and \(r\) are the length and radius of a rod-like particle respectively, \(\varepsilon_m\) is the real permittivity of the suspending medium, \(E_{\text{rms}}\) is the root mean square (rms) of the electric field and \(K(\omega)\) is the Clausius-Mosotti factor. In equation (2), \(\varepsilon_p^*\) and \(\varepsilon_m^*\) are the complex permittivities of the rod-like particle and the suspending medium, respectively. Here \(\varepsilon^* = \varepsilon - i(\sigma / \omega)\), where \(i = \sqrt{-1}\), \(\varepsilon\) is the real permittivity and \(\sigma\) is the conductivity of the material. In general, \(\varepsilon\) is a material property and can be written as a product of the relative permittivity of the material and permittivity of free space \(\varepsilon_0\). As shown in equation (1), the strength of the dielectrophoretic force is proportional to the size and
shape of the nanostructure, as well as the gradient of field squared. The simulation indicates that the maximum of the electric field intensity and maximum of the gradient of the electric field squared usually exist around electrode corners. For example, the maximum field is calculated to be in the order of 10^7 V/m. Such high field strength and gradients will favor rapid attraction of the nanoelements during the assembly for the case of positive dielectrophoresis.

The calculation for the Clausium-Mossotti factor involved many approximations and is highly dependent upon the material and medium property and the frequency of the applied voltage. The value of real permittivity (ε_r) for SWNTs varies from unity for semiconducting tubes to infinity for metallic ones. [61, 266, 267] In Dimaki’s work, [265] the permittivity of semiconducting SWNTs (s-SWNT) was assumed as $2.5 \varepsilon_0$. The conductivity of the s-SWNT and metallic SWNT (m-SWNT) is assumed as 10^5 S/m and 10^8 S/m respectively [37, 268, 269] in literature. The relative dielectric constant and the conductivity of the medium is $78 \varepsilon_0$ and 40 μS, respectively. Calculations have shown that the K factor is negative for s-SWNT and positive for m-SWNTs [37, 268, 269]. During our 3D assembly, we consider m-SWNTs in the simulation with a positive K factor. Figure 8.13a shows the initial condition of a SWNT in the vicinity of an electrode. The potential contour and electric field lines are also plotted on Figure 8.13a. Initially, the SWNT experiences a DEP force and then gets aligned with the electric field lines. The transport behaviour is fairly complex and involves rotation, followed by motion along a trajectory. The electro-orientation of SWNTs is caused by the torque acting on the rod-like nanoelement. Such a torque acting on the nanotube can be calculated as:[227, 270]
\[T = 4 \pi^2 \varepsilon_a l \varepsilon_m \text{Re} \left(\frac{(\varepsilon_p - \varepsilon_m)^2}{\varepsilon_m (\varepsilon_p + \varepsilon_m)} \right) E_{\text{rms}}^2 \sin \theta \] \hspace{1cm} (3)

where \(\theta \) is the angle between electric field and long axis of the rod-like particle. As the first step, we omit the rotation and focus only on the trajectories followed by the center of the nanotube. We have developed a simple way to simulate the trajectories of rod-like nanoelements based on the following equations:

\[m_o \cdot x_o^e = F(t, x_o^e, x_o^v) \] \hspace{1cm} (4)

where \(m_o \) represents the mass of a nanoscale object, \(x_o \) is the coordinate of the object in the 2-D plane, \(x_o^v \) is the velocity of the object, and \(x_o^e \) is the acceleration of the object.
A simplified CNT trajectory under the combined influence of DEP force and viscous drag is illustrated in Figure 8.13b. The final position of the CNT is shown in Figure 8.13c, where an inclined attachment has been achieved following the assembly process.

8.3 A Vertical SWNTs Field Effect Transistor

Carbon nanotubes possess unique electrical, mechanical and thermal properties and may potentially serve as the building blocks of novel devices of technological importance. They have been extensively utilized in many nanoscale devices including CNTFETs, [37] sensors, [100] memory devices, [40] logic circuits, [151] field-emission displays [254] and interconnects [271]. The continuing demand for more functionality from integrated circuits is the driving factor to realize more transistors in a given chip area. Reducing lateral dimensions have certain limitations which result in lower current densities and large parasitic gate capacitances. [252] There is a continuous push to develop alternative technologies that can increase density of transistors on a chip.

The vertical arrangement of carbon nanotube transistors has been proposed as a means for large scale, high density realization of nanoelectronic circuits. As a first step towards realizing this goal, Duesberg et al. have demonstrated Catalytic Chemical Vapor Deposition (CCVD) technique and grew a single MWNT inside a 20nm hole. [253] Choi and colleagues have achieved ultrahigh density nano transistors utilizing a similar CCVD method. [257] Chen et al. were able to demonstrate a high density vertical nanowire
transistor \((10^8\text{cm}^2)\) on a flexible polymer foil. [272] All these techniques have various drawbacks which limited their potential success. For example, the CCVD method requires high growth temperatures (>500ºC) and the template based growth is only applicable to small areas. Polyethylene terephthalate (PET) polymer based technology is unstable as it is sensitive to environmental conditions. Three dimensional assembly of carbon nanotubes on a 3D platform is previously demonstrated. Utilizing this 3D microplatform, a 3D CNTFET technology allows the realization of vertical transistors and has the potential for large scale ultra-high density nanoelectronic circuits is next demonstrated.

8.3.1 Fabrication of 3D SWNTs FET

To realize the 3D CNTFETs, first a 3D micromachined platform was fabricated on a silicon wafer utilizing the process flow detailed in our previous work. The 3D microplatform comprises of Cr/Au (50Å/750Å) source and drain electrodes separated (in the vertical dimension) by a 1µm thick Parylene-C dielectric layer, fabricated on a silicon wafer with a 2 mask process. Then, utilizing dielectrophoretic (DEP) assembly, SWNTs are incorporated between the source and drain electrodes in a vertical manner as seen in the SEM micrographs shown in the previous section. Commercially available aqueous suspension of highly purified HIPCo-grown SWNTs are used in these experiments. The average diameter of the SWNTs is about 3 nm with an average length of 3 µm. To perform nanotube assembly, a 1µl SWNT solution was dispensed over the microelectrodes and the DEP assembly was conducted at a frequency of 300 kHz and a peak-to-peak voltage of 10V for 30 seconds. Following the assembly, two terminal I-V
measurements were performed to ensure connectivity using a Semiconductor Parameter Analyzer (HP4155). After the assembly, the sample was annealed on a hot plate for 30 minutes at 90°C to improve the gold pad to nanotube contacts.

The fabrication process following the DEP assembly is detailed in Figure 8.14. After assembly, a 1 µm thick Parylene-C gate dielectric was deposited (Figure 8.14b). Then, the non-local gate metal, Cr/Au of thickness 50Å/750Å (Figure 8.14c) was deposited using sputtering method. The contacts for source and drain connections were next opened with an extra photolithography step. First, the Cr/Au layer was wet etched and then the Parylene-C dielectric layer was etched in an O₂ plasma utilizing an inductively coupled plasma etcher (Plasmatherm 790) tool as seen in Figure 8.14d. An optical photograph of the fabricated 3D CNTFET is shown in Figure 8.15.

![Fabrication process diagram](image)

Figure 8.14: Fabrication of 3D SWNT based vertical Field Effect Transistors. (a) assemble nanotubes on microfabricated 3D electrodes (Cr/Au metal thickness is 50Å/750Å), (b) deposit 1µm thick Parylene-C gate dielectric material, (c) deposit Cr/Au gate electrode (50Å/750Å), and (d) open source and drain contacts using conventional photolithography (refer Appendix D for detailed information).
8.3.2 Electrical Characterization of Vertical SWNTs FETs

After fabrication of the 3D CNTFET, the drain current of the FET (I_{DS}) was measured as a function of the drain voltage (V_{DS}) as the gate voltage (V_{GS}) was swept from -40V to 40V. This measurement was performed at ambient temperature utilizing the parameter analyzer (HP4155). It was observed that the drain current saturated for gate voltages exceeding 10V. Consequently, the gate voltage of above 10V had a very little effect on the drain-source current of the transistor. This fact clearly indicated that the metallic single-walled nanotubes were dominating the channel conductance for gate voltages higher than 10V. Destroying the metallic nanotubes utilizing an electrical breakdown process was necessary in order to obtain pronounced semiconducting behavior. [173]
Collins et al. [173] have demonstrated the destruction of metallic nanotubes from bundles by electrically induced breakdown. During this breakdown process,

![Graph](image1)

Figure 8.16: I_{DS}-V_{DS} measurement for the CNTs breakdown. Metallic SWNTs were selectively burnt at a gate voltage of 20V as V_{DS} was varied from 0 to 15V with 1V increments.

![SEM Image](image2)

Figure: 8.17 SEM micrograph of the 3D SWNT FET after the metallic nanotubes were burnt by passing a current through them. The disconnected nanotubes are circled.

the metallic nanotubes which inherently carry a higher current are burnt while the nanotubes that carry little or no current are unharmed. In SWNTs bundles, the semiconducting nanotubes are depleted of charge carriers at high gate voltage which
prevent them from getting damaged where the high currents selectively destroy the metallic nanotubes. This type of selection of semiconducting nanotubes within bundles for the realization of nanotube electronic devices has been reported previously. [99, 273, 274] The electrical breakdown of metallic nanotubes was conducted at a gate source bias voltage of 20V while the V_{DS} was ramped from 0V to 15V in 1V increments. Figure 8.16 illustrates the I_{DS}-V_{DS} measurement from one of the 3D CNTFET devices during the burning process. It was observed that the drain-source current gradually increased from 0mA to 0.323mA where the drain-source voltage was 6.8V and then dropped to 0.137 mA as the drain-source voltage was further increased to 7.1V. This continuous up and down behavior for drain-source current of the transistor was present until the drain-source voltage reached 15V, after which the drain to source current stabilized which suggested the breakdown of most of the metallic nanotubes. Figure 8.17 shows an SEM micrograph of the electrically burnt metallic nanotubes from one of these CNTFET devices. As seen in Figure 8.18, an I-V measurement was also performed on one of the devices to monitor

![Graph](image.png)

Figure 8.18: Two terminal resistance from a sample device before and after the breakdown of metallic SWNTs.

139
the two terminal resistance before and after the electrical breakdown. The measured resistance before the burning process was 53.87K Ohms, and was increased to 108.67K Ohms after the destruction of the metallic nanotubes.

![Figure 8.19: I_{DS}-V_{DS} characteristics where V_{GS} is swept from -40V to 10V with 10V increments.](image)

Following the breakdown process, I_{DS}-V_{DS} curves were remeasured where the V_{GS} was varied from -40V to 10V with 10V increments, and corresponding to an increase in V_{GS}, a decrease in conductance was observed (Figure 8.19).

The DC characteristics of the transistor (Figure 8.20) displayed ambipolar behavior. The device displayed more pronounced p-type semiconducting behavior for V_{GS} values less than -2.5V, and n-type behavior for V_{GS} values exceeding -2.5V, respectively. Such ambipolar behavior was also reported from planar CNTFET devices without post treatment. [199, 257, 275, 276] An on-to-off current ratio of $\sim 3 \times 10^4$ was measured (Figure 8.20b). The transconductance parameter (g_m) of the 3D-CNTFET is calculated from Figure 8.20 and is shown in Table 8.3.
To calculate the mobility (\(\mu\)) the following equation was used [274]:

\[
\mu = \frac{g_m \cdot L_{ds}^2}{C_g \cdot V_{ds}}
\]

where \(C_g = \frac{2\pi \cdot L_{ds} \cdot \varepsilon_r \cdot \varepsilon_0}{\ln(2t/r)}\)

<table>
<thead>
<tr>
<th>(V_{ds}) (mV)</th>
<th>(g_m) ((\mu)s)</th>
<th>(\mu) (cm(^2)/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.061</td>
<td>277.2</td>
</tr>
<tr>
<td>-90</td>
<td>0.0577</td>
<td>145.7</td>
</tr>
<tr>
<td>-150</td>
<td>0.0563</td>
<td>85.3</td>
</tr>
</tbody>
</table>

Table 8.3: Calculated transconductance and mobility values for the 3D CNTFET

and \(C_g\) is the gate-channel capacitance, \(L_{ds}\) is the length of the nanotube between source and drain (channel length), \(\varepsilon_r\) is the dielectric constant of Parylene-C, \(t\) is the thickness of the gate dielectric material and \(r\) is the radius of the SWNT bundle. The dielectric constant of Parylene-C is 3.2, [199] the thickness of the gate dielectric is 1\(\mu\)m, and the radius of the bundle is assumed as 35 nm. [99] The channel length was approximated as 1\(\mu\)m for \(C_g\) and \(\mu\) calculations. Using these values, the mobility (\(\mu\)) values for the 3D CNTFET is calculated and is shown in Table 5.3 above. These preliminary results are comparable to those values obtained from planar CNTFETs which have been reported in the literature. A detailed experimental and analytical study is required to further study and to improve the characteristics of the 3D-CNTFET.
Figure 8.20: I_{DS}-V_{GS} characteristic of 3D CNTFET measured at room temperature. (a) A linear plot measured at V_{DS}=-50mV. Inset: magnified I_{DS}-V_{GS} showing the transition from p-type to n-type behavior. (b) Semi logarithmic I_{DS}-V_{GS} plot for V_{DS}=-90mV and V_{DS} =-150mV.

In conclusion, a novel, low temperature 3D-CNTFET technology which has promising applications in building high density nanoelectronic circuits is demonstrated. Utilizing a non-local top gate geometry, SWNTs were used as the active channel layer with Parylene-C as the gate dielectric material. The 3D-CNTFET exhibited ambipolar
behavior with more pronounced p-type behavior than n-type behavior. The maximum transconductance of 0.061µs, a highest mobility of 277 cm²/Vs and an on-to-off current ratio of ~ 3x10⁴ were also measured. Carbon nanotubes are increasingly being utilized in system level applications such as the demonstration of a carbon nanotube radio and chemical/biological sensor systems. Translating the 3D integration concept of realizing high density systems, CNT transistors and sensors fabricated on individual layers can be connected to other layers utilizing vertical CNTs. The 3D-CNTFET technology can possibly be utilized to build multi layer, compact and high density nanotube transistors for large scale nanoelectronic circuits.
Chapter 9

Conclusion and Future Work

In this thesis, I have investigated CNT FETs along with parylene-C for flexible and biocompatible device applications. First, I have characterized parylene-C deposition and surface properties, and developed a low temperature and low pressure ICP dry etching process for patterning parylene film. Next, I have studied the adhesion properties of parylene-C on silicon dioxide and metal surface utilizing dry and wet adhesion promoters, and evaluated the reliability of thin parylene-C gate dielectric for CNT based flexible device applications. A metal-insulator-metal (MIM) capacitor structure was employed in the above experiments to characterize the time dependent dielectric breakdown of various parylene-C dielectric thicknesses. Then, I have designed and fabricated a CNTFET on a 10 µm flexible parylene-C substrate where 1 µm thick parylene-C was employed as a gate dielectric material. The device has been realized using dielectrophoretic assembly followed by electrical burning method. The electrical characterization tests displayed significantly improved performance after this burning process. Compared to the other assembly methods, DEP process is simple, high yield and also results in aligned nanotubes. Next, I have deposited thin parylene layers on to the flexible CNT FET and evaluated the performance of the CNT TFTs before and after the deposition. According to my test results, a thin 1 µm parylene-C passivation
densified carbon nanotubes and fixed their position on metal electrodes which resulted in more than 10% increase in the ON current of the transistors but no noticeable changes were observed in other transistor properties. After high vacuum treatments the unencapsulated TFTs showed suppression in the hysteresis width. Moreover, the transistor characteristics of 1 µm parylene-C packaged TFT remained unchanged after 28 hours in high vacuum exposure and indicated that the 1 µm parylene-C film is a good barrier for CNTFETs. The devices that were encapsulated with 1 µm and 3 µm parylene films displayed similar behaviors and indicated that the thickness of parylene-C passivation coating can be adjusted based on the specifications of a device. After studying the effects of parylene passivation on CNTFETs, I have evaluated the mechanical flexibility of 1 µm parylene-C packaged TFTs. The encapsulated and ultraflexible TFTs can be bent to radius down to 1.5 mm and remained operational. The stability of all-parylene CNTFETs are also studied in 0.9% sterile solution of sodium chloride for 42 days. Finally, I have designed and fabricated high density top gated vertical CNT FETs. Compared to other 3D FETs, the process is simple and high yield and allows the realization of CNT FETs in the vertical dimension. As part of this process, I have also optimized the DEP assembly parameters for realizing vertical CNT TFTs. Even though significant progress has been made in this thesis, further work includes the realization of low voltage FETs with thin gate dielectric, evaluation of life expectancy of parylene-C packaged TFTs in saline solution, real time bending test and simulation of all-parylene SWNT TFTs, and contact resistance of SWNTs before and after different thicknesses of parylene coating.
Appendix A

Appendix A-1 Parylene Deposition Procedure

(i) Parylene Deposition Procedure using PDS 2010 Labcoater 2

A Specialty Coating Systems Parylene Deposition System 2010 Labcoater 2 (PDS 2010) is used for Parylene deposition, which is available in the Kostas Nanomanufacturing Facility at Northeastern University. The Figure A.1 shows the picture of PDS 2010 equipment system.

The PDS 2010 consists of tubes, chambers and a control panel. The most important components of this system are vaporizer, pyrolysis furnace, deposition chamber, cold trap, vacuum pump and the control panel. As discussed earlier, vaporizer heats the parylene dimer until it becomes parylene gas; pyrolysis furnace decomposes parylene dimer gas into parylene monomer gas; deposition chamber is where parylene polymerization take places. The cold trap is a cryogenic device by which a mechanical chiller cools a finger. The chilled finger then condenses parylene process by-products and prevents contamination of the vacuum pump. The vacuum pump maintains the PDS 2010 system in a highly vacuum condition. The Table A.1 explains the functionality of each of the buttons on the control panel. The Parylene Deposition Process instructions are also included in the next section.
<table>
<thead>
<tr>
<th>Control Panel Buttons</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Power</td>
<td>It provides and removes power to the system. When this button is pressed down, power is provided to the machine and button is illuminated.</td>
</tr>
<tr>
<td>Emergency Stop</td>
<td>It is a rotary type button. When this button is pressed down, it will remove power to the machine. Rotate this button clockwise in order to release it.</td>
</tr>
<tr>
<td>Furnace Temperature</td>
<td>It displays and controls the temperature of the Pyrolysis furnace. The furnace set point values are 650 °C for Parylene N and 690 °C for Parylene C.</td>
</tr>
<tr>
<td>Controller</td>
<td></td>
</tr>
<tr>
<td>Chamber Gauge Temperature</td>
<td>It displays and controls the temperature of the vacuum gauge tube. The heating of this tube prevents the deposition chamber pressure gauge from becoming coated with Parylene. The chamber gauge set point value should be 135 °C.</td>
</tr>
<tr>
<td>Temperature Controller</td>
<td></td>
</tr>
<tr>
<td>Vaporizer Temperature</td>
<td>It displays the vaporizer temperature. The set values are 160 °C for Parylene N and 175 °C for Parylene C.</td>
</tr>
<tr>
<td>Controller</td>
<td></td>
</tr>
<tr>
<td>Vacuum Pressure Controller</td>
<td>It displays the degree of vacuum in the system in units of milli-Torr. The base pressure of the system will change over time. Therefore, the vacuum set point values are 55 units above the base pressure for Parylene N, and 25 units above the base pressure for Parylene C.</td>
</tr>
<tr>
<td>Alarm</td>
<td>It enables the audio alarm signal. It is illuminated only in the case of a system fault during a deposition cycle. Pressing the button down will deactivate the audio signal. If a fault condition occurs the red light will illuminate and the system will automatically shut down if the fault is not rectified within 5 minutes. A fault condition will occur when neither the furnace, the gauge tube, nor the vaporizer temperature is out of range.</td>
</tr>
<tr>
<td>Process Start/Stop</td>
<td>Pressing this button starts and stops a process run. A green light indicates that the process is running. A blinking light indicates that the process is complete.</td>
</tr>
</tbody>
</table>

Table A.1: Definition of Process Controllers and Process Controller Set Points [118].
Figure A.1: PDS2010 Parylene Deposition System
(ii) A quick summary of how to operate PDS2010

Step 1: Load Sample

(1) Please Log in

(2) Load Parylene Dimmer

Create Aluminum board → Weigh Parylene Dimmer → Open Vaporization Chamber (VC) → Load Parylene dimmer into the VC → Close VC

(3) Load Sample

Open chamber → load sample → close chamber

Make sure that the chamber is sealed very well to the plate
Step 2: Parylene deposition

(1) TURN ON vacuum and wait till the vacuum pressure reaches 0 mTorr or below

Hold cold finger firmly ➔ Turn knob to vacuum

(2) TURN ON Chiller

When the Vacuum pressure reaches 25 mTorr TURN ON mechanical Chiller

(3) Start Deposition

(a) Wait till the vacuum pressure reaches 0mTorr or below (would take 10-30 minutes)
(b) Enable Furnace ➔ Enable Vaporizer ➔ Start Process
Step 3: Unload Sample

(1) Make sure that the Furnace Temperature is below 100°C

(2) TURN OFF the machine

(a) Turn off the Chiller

(b) Turn the Vacuum knob to HOLD position

(c) Disable Furnace → Disable Vaporizer→ Stop Process

(d) Vent the machine (turn Vacuum knob to Vent)

(e) Remove Cold Finger (CF) → Secure CF→ Allow CF to cool down for 30 minutes

(3) Open deposition chamber and Unload samples (you can unload it while CF is cooling down)

Step 4: Cleaning Process

(1) Deposition Chamber

(a) Remove Parylene film from the chamber. You can use soap solution if it is difficult to remove which applies for thin film deposition (DON’T USE TWEEZER NOR RAZOR BLADES)

(b) Clean the chamber with Soap solution (wet texwipe with soap solution and apply around inner side of chamber)
(c) Apply very little high vacuum greese (HVG) on O’Ring

(DON’T PUT TOO MUCH OF HVG WHICH WOULD CAUSE OUT-GASSING)

(2) Remove Parylene from the Plate (REPEAT 1(a), 1(b)) → CLOSE chamber

(3) Clean the Vaporization Chamber with Isopropyl Alcohol (IPA) then CLOSE VC

(4) CLEAN Cold Finger

(a) Use Deionized (DI) water and Scotch brite to clean cold finger
(b) Clean CF with IPA (wet the texwipe with IPA and apply around CF)

(c) Apply Soap solution on CF (wet the texwipe with soap solution and apply around CF)

(DON’T USE TWEEZER OR RAZOR BLADES)

Step 5: Pump down PDS2010

(1) Secure Cold Finger and TURN ON vacuum

(2) When the pressure reaches 100 mTorr HOLD vacuum (turn knob to hold position)

Appendix A-2 Parylene Properties

<table>
<thead>
<tr>
<th>Mechanical, Physical and Electrical Properties</th>
<th>Pa-N</th>
<th>Pa-C</th>
<th>Pa-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant (1 MHz)</td>
<td>2.66</td>
<td>2.95</td>
<td>2.8</td>
</tr>
<tr>
<td>Dissipation factor (1 MHz)</td>
<td>0.001</td>
<td>0.013</td>
<td>0.002</td>
</tr>
<tr>
<td>Dielectric strength (MV/cm)</td>
<td>300</td>
<td>185-220</td>
<td>215</td>
</tr>
<tr>
<td>Volume resistivity (23°C, 50%RH, ω)</td>
<td>1.4x10¹⁷</td>
<td>8.8x10¹⁶</td>
<td>2x10¹⁶</td>
</tr>
<tr>
<td>Surface resistivity (23°C, 50%RH, ω)</td>
<td>1.0x10¹³</td>
<td>1.0x10¹⁴</td>
<td>5.0x10¹⁶</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>420</td>
<td>290</td>
<td>380</td>
</tr>
<tr>
<td>Glass transition (°C)</td>
<td>13-80</td>
<td>35-80</td>
<td>110</td>
</tr>
<tr>
<td>Linear coeff. of expansion (25°C x10⁻³, K⁻¹)</td>
<td>6.9</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Heat capacity (25°C, J/(gK))</td>
<td>1.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (25°C, kW/(mK))</td>
<td>12</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.110</td>
<td>1.289</td>
<td>1.418</td>
</tr>
<tr>
<td>Refractive Index (in plane)</td>
<td>1.661</td>
<td>1.639</td>
<td>1.669</td>
</tr>
<tr>
<td>Tensile modulus (GPa)</td>
<td>2.4</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>45</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Yield strength (MPa)</td>
<td>42</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Elongation to break (%)</td>
<td>30</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Static coefficient of friction</td>
<td>0.25</td>
<td>0.29</td>
<td>0.35</td>
</tr>
<tr>
<td>Dynamic coefficient of friction</td>
<td>0.25</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>Hardness (GPa, nanoindentation)</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water absorption (%)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table A.1 Electrical, Mechanical and Chemical properties of Parylene N, C, D[201]
<table>
<thead>
<tr>
<th>Property</th>
<th>Parylene N</th>
<th>Parylene C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crevice Penetration</td>
<td>Best</td>
<td>Good</td>
</tr>
<tr>
<td>Molecular Activity</td>
<td>Highest</td>
<td>Good</td>
</tr>
<tr>
<td>Coating Uniformity</td>
<td>Best</td>
<td>Good</td>
</tr>
<tr>
<td>Hardness</td>
<td>Least</td>
<td>Moderate</td>
</tr>
<tr>
<td>Physical Toughness</td>
<td>Least</td>
<td>Moderate</td>
</tr>
<tr>
<td>Moisture Resistance</td>
<td>Moderate</td>
<td>Best</td>
</tr>
<tr>
<td>Cost Effectiveness</td>
<td>Moderate</td>
<td>Best</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>Best</td>
<td>Good</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>Lowest</td>
<td>Higher</td>
</tr>
<tr>
<td>Gas Permeability</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Elongation to Break</td>
<td>Lower</td>
<td>Best</td>
</tr>
<tr>
<td>Thickness Control</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>Masking Complexity</td>
<td>Greatest</td>
<td>Moderate</td>
</tr>
<tr>
<td>Thermal Stability</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Coating Speed</td>
<td>Lowest</td>
<td>Moderate</td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>Lower</td>
<td>Higher</td>
</tr>
<tr>
<td>Lubricity (Coefficient of Friction)</td>
<td>Best</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table A.2 Parylene properties by polymer type [201, 267].
<table>
<thead>
<tr>
<th>Application</th>
<th>Parylene N</th>
<th>Parylene C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter Mandrels</td>
<td>Lubricity</td>
<td>-</td>
</tr>
<tr>
<td>Feeder Tubes</td>
<td>Crevice Penetration</td>
<td>-</td>
</tr>
<tr>
<td>Laparoscopic Devices</td>
<td>-</td>
<td>Dielectric Strength</td>
</tr>
<tr>
<td>Catheters/Stylettes</td>
<td>-</td>
<td>Lubricity</td>
</tr>
<tr>
<td>Cardiac Assist Devices</td>
<td>-</td>
<td>Barrier/Dielectric</td>
</tr>
<tr>
<td>Orthopaedic Hardwear</td>
<td>-</td>
<td>Biocompatibility Barrier</td>
</tr>
<tr>
<td>Pressure Sensors</td>
<td>-</td>
<td>Dielectric/Barrier</td>
</tr>
<tr>
<td>Prosthetic Components</td>
<td>-</td>
<td>Barrier/Lubricity</td>
</tr>
<tr>
<td>Stents</td>
<td>-</td>
<td>Biocompatibility Barrier</td>
</tr>
<tr>
<td>Electronic Circuits</td>
<td>-</td>
<td>Dielectric Barrier</td>
</tr>
<tr>
<td>Ultrasonic Transducers</td>
<td>-</td>
<td>Biocompatibility Barrier</td>
</tr>
<tr>
<td>Bone-Growth Stimulators</td>
<td>-</td>
<td>Biocompatibility Barrier</td>
</tr>
<tr>
<td>Cochlear Ear Implants</td>
<td>-</td>
<td>Barrier/Dielectric</td>
</tr>
<tr>
<td>Brain Probes</td>
<td>-</td>
<td>Biostability</td>
</tr>
<tr>
<td>Blood-Handling Components</td>
<td>-</td>
<td>Biostability</td>
</tr>
<tr>
<td>Needles</td>
<td>-</td>
<td>Biostability</td>
</tr>
<tr>
<td>Cannulae</td>
<td>-</td>
<td>Biostability</td>
</tr>
<tr>
<td>Bone Pins</td>
<td>-</td>
<td>Biostability</td>
</tr>
<tr>
<td>Analytical Lab Trays</td>
<td>-</td>
<td>Biostability</td>
</tr>
</tbody>
</table>

Table A.3 Primary Parylene coating functions for selected medical substrates [201, 267]

155
Body Tissue Compatibility | In Vitro tissue culture studies show that human cell types will readily proliferate on Parylene-Coated surfaces to produce thin adherent layers of morphologically normal tissue.

Blood Compatibility | Parylene has been evaluated in blood compatibility tests and found to be non-haemolytic and non-thrombogenic.

Toxicity | Tests confirm that Parylene is not cytotoxic. It has been shown that deposition of a thin film of Parylene over a toxic surface will render it atraumatic to cells during tissue culture. Parylene is defined as a United States Pharmacopoeia (USP) Class VI Plastic, and has been subjected to and passed a variety of US Food and Drug Administration (FDA) and International Organization for Standardization (ISO) 10993 biological evaluations.

Water Moisture Barrier | A 25µm thick coating of Parylene on silicone-coated devices reduces water absorption by several orders of magnitude to a virtually undetectable level.

Physical Characteristics | Parylene static and dynamic coefficients of friction are nearly identical, with lubricity approaching that of polytetrafluoroethylene (PTFE).

Optical Properties | Parylene exhibits very little absorption in the visible region and is transparent and colourless. In the ultraviolet spectrum, there is strong absorption at the shorter wavelength end of the spectra (below 0.3µm).

| Table A.4 Medical Properties of Parylene [201].

Appendix A-3 Process Flow for Parylene-C Dry Etching

1. Clean wafers using the standard pre-diffusion cleaning process.

2. Spin Coat adhesion promoter. I used Hexamethyldisilazane (HMDS) to facilitate the dry lift off of parylene.

3. Deposit 10 µm thick parylene film using the PDS2010 Labcoater 2 Deposition System (Specialty Coating Systems, Indianapolis, IN). Here the thickness can be modified for specific applications. For example, 20 µm parylene film is preferred for wafer scale parylene-C shadow mask applications.

4. Deposit 0.2 µm thick aluminum, which was used as a hard mask to pattern parylene.
5. Spin coat Shipley-1813 photoresist (PR) at 4000 rpm for 45 seconds.

6. Expose PR for 6.5 seconds using standard UV lithography to define patterns on aluminum layer.

7. Develop patterns using standard Developer MF319 for 42 seconds followed by DI rinse for 3 minutes and gentle N₂ blow dry.

8. Etch the aluminum mask in an Al etchant (PAN etchant) at 50°C for 30 seconds followed by DI rinse for 5 minutes and gentle N₂ blow dry.

9. Dry etch the parylene film in an Inductively Coupled Plasma (ICP) reactive ion etching system (Plasmatherm 790) using one of the listed recipes from Table 3.1.

10. Strip the aluminum hard mask using the Al etchant at 50°C for 2 minutes followed by DI rinse for 5 minutes and gentle N₂ blow dry.

Appendix A-4 Anti-Stiction Coating Process

Hydrocarbon or fluorocarbon chlorosilane-based self-assembled monolayers (SAMs) are widely used in MEMS industry to improve the adhesion properties of micromechanical surfaces [270]. I have utilized a vapor phase based anti-stiction process to modify the hydrophilic parylene to a hydrophobic surface. The commercially available trichlorosilane precursors, which function as anti-stiction layers, was obtained from Fisher Scientific and evaporated in vacuum oven (Vacuum Oven Precision Model 19, Thermo Electron Corporation). The evaporated SAM converted the parylene surface to be almost a super hydrophobic surface. Evaporation was performed at low temperature (110°-130°C) and high pressure (25-27 Hg).

Procedure to Operate Vacuum Oven

1. Clean the oven, which includes several (at least 3 times) Pumping and Purging process. Pump the oven till the pressure reaches 25-27 Hg then purge with N₂ gas.
2. Load samples.

3. Using micro-needles, take 0.2-0.4 µl of tricholorosilane and carefully drop it inside the glass tube bottle kept inside the oven.

4. Turn the vacuum on and wait till the pressure reaches 25-27 Hg.

5. Adjust the heater knob to set up the evaporating temperature. It requires 2-3 hours to complete the evaporation process at required temperature.

6. Once the evaporation is completed, turn the heater knob to 0 and allow the machine to cool down to room temperature. It requires at least 3 hours cooling down the system.

7. Purge at least 3 times to eliminate the toxic gases.

8. Unload samples.

Appendix A-5 Parylene-C Roughening

Oxygen Plasma Treatment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>100 Watts</td>
</tr>
<tr>
<td>RF2</td>
<td>150 Watts</td>
</tr>
<tr>
<td>O₂</td>
<td>50 SCCM</td>
</tr>
<tr>
<td>Ar</td>
<td>20 SCCM</td>
</tr>
<tr>
<td>Pressure</td>
<td>5 mTorr</td>
</tr>
<tr>
<td>Temperature</td>
<td>22°C</td>
</tr>
</tbody>
</table>

Table A.6: Parylene roughening recipe
Appendix A-6 Recipe for Dry Etching of Parylene-C

ICP etch recipes for low temperature (5°C) and low pressure (5mTorr) parylene-C etching.

<table>
<thead>
<tr>
<th>Etch #</th>
<th>Etch rate (μm/min)</th>
<th>RF Bias Power (W)</th>
<th>Source Power (W)</th>
<th>O₂ (sccm)</th>
<th>Ar (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.7</td>
<td>250</td>
<td>400</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1.0</td>
<td>100</td>
<td>400</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix B

Appendix B-1 Silane A-174 Adhesion Promoter Coating for Parylene-C

(i) Silane A-174 coating on SiO₂ surface

2. Soak samples in Silane solution overnight (at least 6-8 hours of soaking is required).
3. Air dry samples for 30 minutes.
4. Soak samples in IPA for 5 minutes.
5. Blow dry samples in N₂
6. Dehydration bake at 150°C for 10 minutes.
7. Load samples into PDS2010 and start parylene deposition.

(ii) Silane A-174 coating on Parylene-C surface

1. Repeat instructions from 1 to 6.
2. Dehydration bake at 90°C for 15 minutes.
3. Load samples into PDS2010 and start parylene deposition.

Appendix B-2 Submicron Thick Parylene-C Deposition

1. Prior to deposition, change Furnace temperature to 650 °C and Vacuum pressure to 25 mTorr.
2. Repeat instructions from Appendix A-1 (ii).
Deposition rate is linearly proportional to the amount of dimer consumed, and it is consistent with Figure 3.3 in Chapter 3. Using 0.5 and 0.3 grams of parylene-C with the above recipe gave a thickness of 284.7 nm and 130 nm, respectively.

Appendix B-3 Process flow for fabrication of Metal-Insulator-Metal (MIM) Capacitor

1. Create 500 nm thick SiO$_2$ on a pre-diffusion cleaned silicon wafers using wet oxidation technique.

2. Create bottom electrode of 5 nm/150 nm of Cr/Au using sputter deposition.

3. Prepare samples with/without Silane A-174 prior to parylene deposition.

4. Deposit parylene-C dielectric. Thickness of the film is varied from 1100 nm, 560 nm, and 330 nm down to 130 nm.

5. Create top electrode of 5 nm/150 nm of Ti/Au using AZ2020 negative photoresist.
 a) Deposit 5 nm/150 nm of Ti/Au.
 b) Spin negative photoresist AZ2020 at 4000 rpm for 60 seconds.
 c) Softbake at 90°C for 1 minute.
 d) UV Exposure for 4.5 seconds.
 e) Post exposure bake (PEB) at 90°C for 1 minute.
 f) Develop in MIF300 for 50 seconds.
 g) Rinse in DI water for 5 minute followed by N$_2$ blow dry.
 h) Wet etching of 150 nm of Au for 31 seconds in GE8148 gold etchant (etch rate of GE8148 is 50 Å/second).
 i) Rinse in DI water for 5 minute followed by N$_2$ blow dry.
 j) Wet etching of 5 nm of Ti for 3-4 seconds in custom made Ti etchant (DI water: H$_2$O$_2$: HF=20:1:1, etch rate=1.1 μm/min).
 k) Rinse in DI water for 5 minute followed by N$_2$ blow dry.

6. Open contact to bottom electrode in ICP plasma etcher.
 a) Spin Shipley photoresist 1827 at 4000 rpm for 45 seconds.
b) Softbake at 90 °C for 1 minute.

c) UV exposure for 11 seconds.

d) Develop in MF319 for 50 seconds.

e) Rinse in DI water for 5 minute followed by N\textsubscript{2} blow dry.

f) Use recipe ‘C’ from Appendix A-6 to dry etch parylene-C in ICP etcher.

g) After ICP etching, ensure metal connectivity using HP4155 parameter analyzer or digital multimeter.

h) Remove remaining photoresist (5 minutes in Acetone, IPA and DI water).
Appendix C

Appendix C-1 Process Flow for Fabrication of Parylene-C Packaged TFT

(i) Double Lift Off Process to Create Source and Drain electrodes

1. Deposit 0.5 μm thick aluminum on the (rigid/flexible) substrate.

2. Spin coat Shipley-1813 photoresist at 4000 rpm for 45 seconds followed by softbake at 90°C for 1 minute.

3. Expose PR for 6.5 seconds using standard UV lithography to define patterns on aluminum layer.

4. Develop patterns using standard Developer MF319 for 42 seconds followed by DI rinse for 5 minutes and gentle blow dry in N₂.

5. Etch the aluminum mask in an Al etchant (PAN etchant) at 50 °C for 55 seconds followed by DI rinse for 5 minutes and gentle N₂ blow dry.

6. Deposit Ti/Au (5 nm/150 nm) and immerse samples in Acetone for 6 hours to lift off.

7. After 6 hours of soaking in Acetone, rinse in IPA and DI water for 5 minutes followed by N₂ blow dry.

8. Remove Al by repeating step 5 for 1 minutes and 30 seconds.

9. Rinse in Acetone, IPA and DI water for 5 minutes followed by N₂ blow dry.

10. Repeat step 5 for 1 minute.

(ii) Dielectrophoretic (DEP) Assembly of SWNTs for Transistors

I have utilized two different DEP recipes to make CNTFETs.

Recipe1

1. Ultrasonicate the original CNT solution for 30 minutes.

2. Prepare SWNTs solution to the desired concentration: mix 30 μl of CNTs solution (obtained from Brewer Science) with 10 ml of DI water.
3. Ultrasonicate the new CNT solution for 2 hours prior to DEP assembly.

4. Probe Source and Drain electrodes, turn ON Power supply, dispense droplets of CNT solution on the active channel area. DEP assembly of SWNTs is conducted at an amplitude of 2.5 Vpp and frequency of 10 MHz. The assembly time varies with the channel length of the transistor eg. 3 minutes for L= 3 µm.

5. After assembly remaining CNT solution is gently blow dried with N₂ and then the power supply is turned OFF.

6. Verify the assembly by two terminal I-V measurement using HP 4155 parameter analyzer.

Recipe2

1. Ultrasonicate the original CNT solution for 30 minutes.

2. Prepare SWNTs solution: mix 10 µl of CNTs solution (obtained from Brewer Science) with 5 ml of DI water.

3. DEP assembly of SWNTs is conducted at an amplitude of 5 Vpp and frequency of 300 KHz for 20 seconds for L= 3, 5 and 10 µm.

4. Repeat 3 and 6.

(iii) Fabrication of Thin Film Transistor

1. Clean oxidized (500 nm) Si wafers using the standard pre-diffusion cleaning process.

2. Spin coat adhesion promoter at 4000 rpm for 45 seconds. I used Hexamethyldisilazane (HMDS) to facilitate the removal of parylene.

3. Deposit 10 µm thick parylene-C substrate using the PDS2010 Labcoater 2 Deposition System.

4. Create Al (150 nm) Gate (G) electrode using standard photolithography with negative photoresist AZ2020 (MASK1). Refer steps 5b-5g in Appendix B-3 for AZ2020 process.

5. Deposit 1 µm thick parylene-C gate dielectric using PDS2010. Wafers are coated with A-174 adhesion promoter prior to deposition.

6. Create Source (S) and Drain (D) electrode using MASK2. I have used a double lift off process to create Ti/Au (5 nm/150 nm) electrodes.
7. Open contact to Gate electrode using **MASK3** where the lithography process is described in step 6 in Appendix B-6.

8. Assemble SWNTs across S and D using dielectrophoretic assembly method to create CNT channel.

9. After I-V characterization, encapsulate devices with 1 μm thin parylene-C layer, and use **MASK4** to open contact to S, D and G electrodes (repeat step 6 in Appendix B-6).

10. After opening contacts, dry lift off the encapsulated devices for I-V characterization.

(iv) To open electrical contacts to CNTFETs after 3 μm parylene-C passivation

Recipe1: Use double layers of PR1827 as a mask in ICP

1. Spin photoresist Shipley 1827 at 4000 rpm for 60 seconds.
2. Softbake at 90°C for 1 minute.
3. Repeat steps 1-2.
4. UV exposure for 30 seconds.
5. Develop in MF319 for 4 minutes.
6. Rinse in DI water for 5 minute followed by N₂ blow dry.
7. Repeat steps 6f-6h in Appendix B-3.

Recipe2: Use double layers of PR1818 as a mask in ICP

1. Spin Shipley 1818 PR at 3000 rpm for 45 seconds.
2. Softbake at 90 °C for 1 minute.
3. Repeat steps 1-2.
4. UV exposure for 18 seconds.
5. Develop in MF319 for 2 minutes.
6. Rinse in DI water for 5 minute followed by N₂ blow dry.
7. Repeat steps 6f-6h in Appendix B-3.
Appendix D

Appendix D-1 Process Flow for Fabrication of 3D Microplatform

1. Create 500 nm thick SiO$_2$ on a pre-diffusion cleaned silicon wafers using wet oxidation technique.
2. Create bottom electrode of Cr/Au of 200Å/1500Å using double lift off technique. Refer Appendix C-1 (i) for double lift off process flow.
3. Deposit 1 µm thin parylene-C dielectric using PDS2010.
4. Create the second metal layer of Cr/Au of 200Å/1500Å using double lift off method which is described in Appendix C-1 (i).
5. Utilizing the second metal layer as a mask, etch the parylene-C layer with recipe ‘c’ (Appendix A-6) in the ICP (Plasma therm 790) machine.
6. After fabrication, DEP assembly is utilized to assemble SWNTs between the 3D electrodes.
7. Finally, deposit a thin parylene-C (1 µm) as an encapsulation layer and open contacts using the ICP etcher for electrical measurements. To open contact, repeat step 6 in Appendix B-3.

Appendix D-2 3D DEP Assembly of SWNTs for Interconnect

1. Ultrasonicate the original CNT solution for 30 minutes (For 3D assembly, I have utilized CNT solution obtained from Nantero Inc., a CMOS grade aqueous solution with weight concentration of 0.046% and the pH of 6.5).
2. Prepare SWNTs solution to a desired concentration: SWNT solution is diluted to a ratio of 5:1000 with DI water.
3. Ultrasonicate the newly prepared CNT solution for 2 hours prior to DEP assembly.
4. Probe Source and Drain electrodes, turn ON Power supply, dispense 1 µl of CNT solution on the active area. DEP assembly of SWNTs is conducted at an amplitude of 2 V_{pp} and frequency of 10 MHz for 1 minute.

5. After assembly remaining CNT solution is gently blow dried with N₂ and then the power supply is turned OFF.

6. Verify the assembly by two terminal I-V measurement using HP 4155 parameter analyzer.

Appendix D-3 Process Flow for Fabrication of 3D SWNT FETs

1. Fabricate three dimensional microplatform (Appendix D-1).

2. Assembly SWNTs on 3D electrodes (Appendix D-2). For transistors, I have utilized the frequency of 300 kHz at 10 V_{pp} for 20 seconds.

3. After DEP assembly, deposit 1 µm thick parylene-C gate dielectric material on it.

4. Create non-local Al gate electrode of thickness of 150 nm.

5. Finally, open contact to source and drain electrodes using standard photolithography which is described in step 6 in the Appendix B-3.
REFERENCES

PUBLICATIONS

Journal Publications

Conference Proceedings and Presentations

Dip-pen nanolithography could be a simple and quick way to fabricate individual carbon nanotube devices say researchers at Stanford and Northeastern universities in the US. The technique is better than conventional electron-beam lithography because it does not damage the nanotubes.

Single-walled carbon nanotubes (SWCNTs) have unique electrical properties and are ideal for a host of applications, such as single-electron and field-effect transistors, chemical sensors and transparent electronics. The most common method to produce such devices is electron-beam lithography but exposing the nanotubes to electron irradiation can damage them. This means that their intrinsic physical properties can not be studied, something that is crucial for improving future devices.

Now, Theseo Lee and colleagues have put forward a new technique that employs Dip-pen Nanolithography (DPN), a scanning probe-based technique that combines both the nanoscale resolution of electron beam lithography with the ability to print micron-sized contacts. DPN has already proved its merit because it works with a variety of "inks", including the widely-used alkane thiolate, conducting polymers, biological molecules and metal nanoparticles.

Lee’s team has shown that DPN can be used to pattern electronic contacts in nanoelectronic devices made from SWCNTs. The researchers used a scanning probe tip coated with alythiolate ink that acts as a nanoscale "pencil" to selectively deposit the ink at the tip of a thin film of gold covering the carbon nanotubes. The resulting alkythiol pattern plays the role of a mask and protects against subsequent chemical etching, which results gold contacts to isolated nanotubes, explains team member Minsu Wang.

“DPN has many advantages over electron-beam lithography, including minimal damage during fabrication,” he told nanotechweb.org. “It can also image nanostructures and pattern electrical contacts using one system operating under ambient conditions.”
Selvaraja Selvarajah

Here we have all of the facilities one could need to advance research. I'm very proud to be a good student at Northeastern.

Engineering, Computer and Electrical Engineering

Hometown:

Interests: Volleyball, tennis, basketball, community work.

"I realized that I wanted to do research when I came to Northeastern."

Selvarajah says, "I really like what I am doing now!" The two research projects he is currently working on are in the fields of nanoelectronics and flexible electronics. "First, in order to meet the demand for an ever-shrinking technological world, we need to miniaturize the hardware in our devices. Once this is accomplished, one can have more complex devices that provide more functionality within a limited space. For example, say you have 1,000 million transistors and you need to make them denser but don't have sufficient surface area. The solution is to stack devices on top of one another. Due to physical limitations, our technological limit is going to saturate in 2022—after that we need to come up with a new device to replace the current technology. One of my projects is working with carbon nanotubes and nano wires to develop three-dimensional devices."

"The other side of research," he states, "is in flexible. Life science is of interest to me, and developing compatible electronics combines my background with current trends in health such as cancer and HIV. Flexible electronics allow for implantable technologies—devices that can be implanted into a patient for medical purposes. And at the same time, you can wrap them around your wrist, put them on your jacket, and they do the same thing."

"Boston is a great city," Selvarajah states. "It's a hot spot for people who want to advance in their careers—all of the big schools are in Boston. And at Northeastern, we get a lot of visibility in the market for our research...especially for nano and biosciences work. Here we have all of the facilities one could need to advance research. I'm very proud to be a good student at Northeastern."
Selvapraba Selvarasah

"Here we have all of the facilities one could need to advance research. I'm very proud to be a grad student at Northeastern."

Engineering, Computer and Electrical Engineering

Hometown:

Interests: Workout, tennis, volleyball, community work

"I realized that I wanted to do research when I came to Northeastern," Selvapraba says. "I really like what I am doing now." The two research projects he is currently working on are in the fields of nanoelectronics and bioflex—biocompatible—flexible electronics. "First, in order to meet the demand for an ever strengthening technological push, we need to miniaturize the hardware in our devices. Once this is accomplished, one can have more complex devices that provide more functionality within a limited space. For example, say you have 1000 million transistors and you need to make them denser but don't have sufficient surface area. The solution is to stack devices on top of one another. Due to physical limitations, our devices will reach their technological limit is going to saturate in 2022, after this..."
MO82.109 Design and implementation of silicon-based optical nanostructures for integrated photonic circuit applications using Deep Reactive Ion Etching (DRIE) technique
