Analysis and Design of Robust Storage Elements in Nanometric Circuits

A Dissertation Presented
by
Sheng Lin
to
The Department of Electrical and Computer Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Computer Engineering

Northeastern University
Boston, Massachusetts

May 2011
Dissertation Title: Analysis and Design of Robust Storage Elements in Nanometric Circuits.

Author: Sheng Lin.

Department: Electrical and Computer Engineering.

Approved for Dissertation Requirements of the Doctor of Philosophy Degree
Abstract

The stability of storage element circuits in the nanoscale era, such as memories and latches is evaluated and new circuit configurations for stability improvement are proposed in this dissertation. The stability and robustness of a given memory cell are usually evaluated by analyzing both static and dynamic behaviors during typical operation. In this dissertation, a 9T CMOS SRAM cell design at 32nm is first presented to improve static stability, power dissipation, and delay compared to the conventional SRAM cell as well as a detailed comparison with other designs found in the technical literature. Moreover, a dual-diameter Carbon Nanotube-based SRAM cell configuration with different threshold voltages is then designed; this cell shows significant improvements compared to its CMOS counterpart in terms of power consumption and stability.

Two memory cell configurations at 32nm CMOS technology for improving dynamic stability are then proposed in this dissertation and simulation results show significant improvement in dynamic stability. In this work, a comprehensive treatment (model, analysis and design) for hardening storage elements against a soft error resulting in multiple node upsets is also presented. A novel 13T memory cell configuration is proposed and simulated to show a significantly better tolerance to the likely multiple node upset. Simulation results have confirmed that the proposed memory cell accomplish an excellent soft error tolerance through hardening and an impressive power-delay product compared with the other commonly used hardened design.

For the latch, the stability of a latch cell is only judged by the Critical Charge (Q_{crit}) when the latch is not transparent. Three new hardened designs for CMOS latches at 32nm feature size are proposed. For the latch design, a novel design metric
(QPAR) is introduced to assess the overall design effectiveness such as area, performance, power, and soft error tolerance. It has been shown in the dissertation that the proposed latch achieved the best overall performance compared with the existing designs. The multiple node upset analysis is also extended to hardened latches; it is shown that the latch with the highest critical charge has also the best tolerance to multiple node upsets.
Acknowledgements

It is a pleasure to thank many people who made this dissertation possible.

I would like to express my gratitude to my advisors, Dr. Fabrizio Lombardi and Dr. Yong-Bin Kim, whose expertise, understanding, and patience, added considerably to my graduate experience. I appreciate their vast knowledge in many areas, and their assistance in writing technical articles. Throughout my thesis-writing period, they provided encouragement, sound advice, good teaching, and lots of good ideas.

I am especially grateful to the member of my dissertation committee, Dr. Schirner, and the faculty members of the Department of Electrical and Computer Engineering Department for the help and training that enabled me to my work on this dissertation. Their valuable suggestions were really helpful and enhanced the conceptual and methodological clarity of my research work.

Many thank, to many student colleagues of mine for providing a collaborative, stimulating and enjoyable environment. It has been a great pleasure to work in the Computer Engineering Lab of the Northeastern University.

I am grateful to all the staff members at the ECE department, the College of Engineering and NU ISSI for all their kind assistance over the years.

Finally, I want to dedicate this work to my parents. Words can not express my gratitude to them, Xiangyu Lin and Yuling Wu, for their support and love, which I owe all my achievements to. Without them, none of these could have accomplished.

Boston, Massachusetts
Sheng Lin
May 2, 2011
Table of Contents

Table of Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Overview 1

1.1.1 Design Issues of robust SRAM cells 5

1.1.2 Design Issues of robust latches 9

1.2 Previous Work 11

1.3 Dissertation Outline 13

2 Analysis and Design of CMOS SRAM Cell for Low Leakage and
High Stability 17

2.1 Introduction 17

2.2 Review of SRAM Cells 19

2.2.1 Conventional 6T Cell 19

2.2.2 8T and 10T Cell 19

2.3 Proposed 9T SRAM Cell 22

2.3.1 9T Cell Scheme 22

2.3.2 Data Stability and Write-ability 27

2.3.2.1 Static Noise Margin and Write-ability 27

2.3.2.2 Soft Errors and Dynamic Stability 30

2.3.2.3 Area .. 32

2.3.2.4 Standby Power Reduction 34

2.4 A Metric for Memory Cells 37

2.5 Impact of PVT Variations 40

2.6 Conclusion 44
3 Analysis and Design of CNTFET SRAM Cell for Low Leakage and High Stability 48
3.1 Introduction 48
3.2 Carbon Nanotube Field Effect Transistor 50
3.3 Design of 6T SRAM using CNTFET 55
 3.3.1 Read Operation 56
 3.3.2 Write Operation 58
3.4 Dual-Chirality SRAM Cell Design 60
3.5 A Metric for Memory Cells 64
3.6 Impact of Parameter Variations 66
3.7 Conclusion .. 68

4 Analysis and Design of Soft Error Hardened Memory 70
4.1 Introduction ... 70
4.2 Soft Error Modeling for SRAM Cell 73
4.3 Proposed 14T Hardened Memory Design 74
 4.3.1 Existing Hardening Approach in First Category 74
 4.3.2 Proposed 14T Hardened Memory Cell 76
 4.3.3 Transistor Sizing Optimization 78
 4.3.4 Impact of Variations on 14T Hardened Cell 84
4.4 Existing Hardened Memory Design in Second Category 87
 4.4.1 DICE Cell ... 87
 4.4.2 Hardened Cell Proposed in [47] 87
4.5 Proposed 11T Hardened Memory Design 91
4.6 Evaluation of the Proposed 11T Hardened Cell 94
 4.6.1 Critical Charge 95
 4.6.2 Area, Power and Delay 96
 4.6.3 Impact of Process Variation 99
4.7 Multiple Node Upset Analysis on Hardened Memory Cells 100
 4.7.1 Multiple Node Upset Modeling 101
4.8 Proposed 13T Hardened Memory Design 103
4.9 Evaluation of the 13T Memory Cell 104
 4.9.1 Multiple Node Upset Tolerance 105
 4.9.2 Area, Power and Delay 107
 4.9.3 Parameter Variations 109
4.10 Conclusion .. 111
5 Analysis and Design of Soft Error Hardened Latches

5.1 Introduction ... 114
5.2 Soft Error Modeling 115
5.3 Conventional Latch 116
5.4 Existing Hardened Latches 117
5.5 Proposed Hardened Latches 120
 5.5.1 Modified SEM-latch 120
 5.5.2 Alternative Schmitt Trigger Latch 121
 5.5.3 Cascode Schmitt Trigger Latch 122
5.6 Assessment and Comparison of Hardened Latches 124
 5.6.1 Timing and Delay 124
 5.6.2 Area ... 125
 5.6.3 Critical Charge 126
 5.6.4 Power-delay Product and Critical Charge 131
 5.6.5 Process Variations 132
5.7 Multiple Node Upset Analysis 133
 5.7.1 Multiple Node Upset Tolerance 134
 5.7.2 Process Variation Impact on Multiple Node Upset Tolerance .. 135
5.8 Conclusion ... 137

6 Summary and Future Works 139

6.1 Summary of Contributions 139
6.2 Future Works ... 142
 6.2.1 Single Event Upset Tolerant Latch Design 142
 6.2.2 CNTFET-based Hardened Design 143

Bibliography .. 144
List of Tables

2.1 Noise margin comparison at 0.9V Power Supply, Slow Corner, and 100°C Temperature ... 29
2.2 Power dissipation comparison at 0.6V Power Supply and Room Temperature .. 38
3.1 SNM and Write Time of the SRAM Cells at 0.9V Power Supply and Room Temperature .. 63
3.2 SPR of SRAM Cells at 0.9V Power Supply and Room Temperature ... 66
4.1 Critical charge, SNM, and Performance comparison of Different Memory cells at 0.9V Power Supply and Room Temperature .. 82
4.2 Process Variation Impact on SRAM Cell Stability ... 86
4.3 Geometric Parameter of Memory Cells ... 97
4.4 Failure probability of memory cells with PVT variations .. 111
5.1 Critical Charge, Performance, Power Comparison Between Hardened Latches at 0.9V Power Supply and Room Temperature ... 126
5.2 Area of Latches ... 126
5.3 QPAR of Latches ... 130
5.4 Critical Charges and Failure Probability of Latches .. 134
5.5 Failure probability of latches with PVT variations .. 137
List of Figures

1.1 Unrolled graphite sheet .. 4
1.2 Cross section view of a CNTFET 5
1.3 Conventional 6T memory cell .. 5
1.4 Voltage transfer characteristics of a CMOS inverter 7
1.5 Static Noise Margin (SNM) of a 6T SRAM cell 7
1.6 Conventional latch cell .. 9

2.1 Conventional 6T SRAM cell and its worst-case stability condition .. 20
2.2 Hold and read butterfly plot of the conventional 6T SRAM cell at power supply voltage of 0.6V ... 20
2.3 8T SRAM cell .. 21
2.4 10T SRAM cell in [8] .. 21
2.5 10T SRAM cell in [34] ... 22
2.6 Proposed 9T SRAM cell for low-power operation 23
2.7 Power-delay product plot of the 9T SRAM cell 24
2.8 Local write wordline generation scheme 25
2.9 Butterfly plot and N-curve of the SRAM cell 28
2.10 N-curve of the 9T SRAM cell with different MN3/MN1 ratios 29
2.11 Write-trip current and critical charge of the 9T SRAM cell 31
2.12 Proposed 9T SRAM cell with transistor sizes in W/L (nm) 32
2.13 Layouts of a 3x2 cell array of the 6T SRAM cells 33
2.14 Layouts of a 3x2 cell array of the proposed 9T SRAM cells 33
2.15 Proposed write bitline balancing circuitry .. 35
2.16 Simulation results for the write operation of the proposed 9T SRAM
array ... 37
2.17 SPRs of different SRAM cells ... 39
2.18 Power-delay product of the SRAM cells at different temperatures and
power supplies for a) proposed 9T cell; b) 6T cell 42
2.19 Power-delay product of the SRAM cells with the variations of mobility,
threshold voltage, and velocity saturation for proposed 9T cell 43
2.20 Power-delay product of the SRAM cells with the variations of mobility,
threshold voltage, and velocity saturation for 6T cell 44
2.21 Power-delay product of the SRAM cells with channel length variations
2.22 Distribution of the SRAM cell power dissipation due to threshold volt-
age variations for a) 6T cell; b) proposed 9T cell 46
2.23 Power-delay product distributions of the 6T and the proposed 9T cell
due to process variations ... 47

3.1 Cross sectional view of a carbon nanotube transistor (CNTFET) . . 52
3.2 Top view of a carbon nanotube transistor (CNTFET) 52
3.3 Equivalent circuit model for the intrinsic channel region of a CNTFET 53
3.4 Current-voltage (I-V) characteristics of a ballistic CNTFET 54
3.5 Threshold voltage of P-type CNTFET with different chirality vectors 55
3.6 6T SRAM cell with CMOS ... 56
3.7 6T SRAM cell with CNTFET ... 56
3.8 MN4/MN2 ratio vs. voltage rise at nq for SRAM cells 57
3.9 MP5/MN1 ratio vs. write voltage at q for SRAM cells 59
3.10 Static Noise Margin (SNM) of the SRAM cell with different PCNTFET
chirality vectors .. 62
3.11 Static Noise Margin (SNM) of the SRAM cell with different NCNTFET
chirality vectors ... 64
3.12 Power delay product of CMOS (left) and CNTFET (right) SRAM cells versus power supply and temperature variations 67
3.13 Write time distribution of CMOS and CNTFET SRAM cells 68
3.14 Standby power dissipation distribution of CMOS and CNTFET SRAM cells .. 69

4.1 Hardened SRAM cell by using a capacitor (SRAM-C cell) 72
4.2 Dual Interlocked storage Cell (DICE cell) 73
4.3 Equivalent circuits used for simulation of positive glitches in a 6T SRAM cell ... 75
4.4 Equivalent circuits used for simulation of negative glitches in a 6T SRAM cell ... 75
4.5 Hardened memory configuration of [68] (TCT cell) 76
4.6 Proposed 14T hardened memory cell ... 79
4.7 SNMs of SRAM cells .. 80
4.8 Write time and access time of SRAM cells 81
4.9 Leakage power of SRAM cells .. 82
4.10 Layout of TCT cell ... 83
4.11 Layout of HP cell ... 83
4.12 Capacitance vs critical charge plot of HP cell 84
4.13 Temperature vs critical charge plot of SRAM cells 86
4.14 Hardening approach proposed in [47] 88
4.15 Hardened memory cell proposed in [47] 90
4.16 Proposed 11T hardening memory cell 92
4.17 Simulation results for the proposed hardened memory cell when transient faults occur on the nodes of the cells 95
4.18 Write delay of memory cells at different temperatures 98
4.19 Layout of DICE cell ... 99
4.20 Layout of Proposed 11T cell .. 99
4.21 PDP of memory cells at different process corners 100
4.22 Proposed 13T hardened memory cell ... 103
4.23 Timing diagram of the proposed 13T memory cell 105
4.24 Critical charge plot on the critical pair for DICE cell, 11T hardened cell and 13T hardened cell .. 107
4.25 Performance, power, and area comparison of the DICE, 11T and 13T cells .. 108
4.26 Layout of Proposed 13T cell ... 110

5.1 Equivalent circuits used for simulation of negative (left) and positive (right) glitches of latches ... 116
5.2 Reference (unhardened) latch ... 117
5.3 A Schmitt trigger based hardening latch .. 118
5.4 A split internal node low-cost latch ... 119
5.5 SER-tolerant path-exclusive latch .. 120
5.6 Modified soft error masking latch design .. 121
5.7 Proposed Schmitt trigger based latch .. 122
5.8 Cascode feedback Schmitt trigger (Cascode ST) latch 123
5.9 Cascode M-SEM latch .. 124
5.10 Timing diagram of a level-sensitive latch .. 125
5.11 Layout of reference latch ... 127
5.12 Layout of SEM-latch ... 128
5.13 Layout of STPE latch .. 128
5.14 Layout of Modified SEM-latch ... 129
5.15 Layout of ST latch ... 129
5.16 Layout of Cascode ST latch .. 130
5.17 Plot of power-delay product vs. critical charge for different latch designs ... 133
5.18 Primary node charge versus secondary node charge of hardened latches ... 136
Chapter 1

Introduction

1.1 Overview

Integrated circuit (IC) technology is the enabling technology for a whole host of innovative devices and systems that have changed the way we live in the last five decades. Integration allows us to build systems with many more transistors, allowing much more computing power to be applied to solving a problem [75]. In the 1960s, Gordon Moore, an industry pioneer, predicted that the number of transistors that could be manufactured on a chip would grow exponentially. His prediction, now known as Moore’s Law, reveals that integration complexity doubles approximately every 1 to 2 years.

CMOS technology scaling has been enabling higher integration capacity in VLSI designs. Over the last few years, devices at 45nm have been manufactured and the deep sub-micron/nano range of 32nm is foreseen to be reached in the near future as technology continues to scale down. In the 32nm technology era, the leakage current has substantially increased, and the sensitivity to process variations in manufacturing is considered to be almost unavoidable. Due to the lower V_{dd} and the smaller
node capacitance, the amount of charge stored on a circuit node is becoming increasingly smaller, thus making circuits more susceptible to spurious voltage variations caused by externally induced phenomena such as cosmic ray neutrons and α-particles [53]. Therefore, robust CMOS circuits design techniques is becoming crucial in the nanoscale era.

Technology boosters such as strain have helped the continuation of CMOS historic performance trend up to 45nm node. As device physical gate length is reduced to below 25nm at/beyond 65nm technology node, various leakage currents and device parameter variation become the most important considerations for device optimization. In fact, it can be argued that reduction of gate length below 25nm may not offer the same advantage as short-gate devices had provided historically in terms of power and performance at the system level [28]. The major detractors are: the lack of a thin equivalent gate oxide (with low leakage current) for effective short channel effect control, the increasing contribution of the fringing parasitic capacitance to the total gate capacitance, and the rising contribution of the source/drain resistance to the total device on-resistance [74]. Moreover, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered MOSFETs. It becomes more difficult to further improve device/circuit performance by reducing the physical gate length.

Therefore, new materials and devices have been investigated to replace silicon in nanoscaled transistors from the year 2015 and beyond. As one of the promising new devices, carbon nanotube transistors (CNTFETs) avoid most of the fundamental limitations for traditional silicon devices, due to their unique one-dimensional band-structure that suppresses backscattering and makes near-ballistic operation a
realistic possibility [55] [2] [25] [42]. A single-walled carbon nanotube (SWCNT) can be visualized as a sheet of graphite which is rolled up and joined together along a roll-up vector, as shown in Figure 1.1. Depending on the chiral angle (roll-up vector or chirality vector), the carbon nanotube can be either semiconducting or metallic. By considering the indices \((n, m)\) shown in Figure 1.1, the nanotube is metallic if \(n=m\) or \(n-m=3i\) where \(i\) is an integer. Otherwise, the tube is semiconducting. CNTFETs are the field-effect transistors that make use of semiconducting carbon nanotubes as channel material between two metal electrodes that act as source and drain contacts. The operation principle of carbon nanotube field-effect transistor (CNTFET) is similar to that of traditional silicon devices. As shown in Figure 1.2, this three (or four) terminal device consists of a semiconducting nanotube, acting as conducting channel, bridging the source and drain contacts. The device is turned on or off electrostatically via the gate. Despite several serious technological barriers, CNTFETs with their small feature size and high-current capability show a potential for performance improvement compared with CMOS transistors.

CMOS storage elements, such as CMOS memories and latches, usually include a data storage circuit or circuit element, which is capable to hold one bit of binary information. The storage cell also includes a data access device, for example, a pass gate transistor for SRAM cell, or a transmission gate for latch. The data access device allows or disallows data read or write from and to the storage circuit depending on the state of the control signal on the control node of the access device. Additional circuit elements may be used to improve environmental tolerance and to accommodate a variety of functions in a single memory cell [24]. As device density increases, a
larger fraction of chip area is devoted to the on-chip memory modules, because on-chip memory helps improve the micro-architectural performance of a microprocessor. Several of the latest processor designs showed that around 50% of the chip area was occupied by caches [58]. Meanwhile, latches and D flip-flops, which are the basic building blocks of the sequential circuits, also take a large area of the latest chips. Our work will focus on the analysis and design of robust storage elements in both 32nm CMOS technology and novel CNTFETs.

In this dissertation, we target the robust design of two major storage elements in modern integrated circuits:

- memory cell
- latch
1.1.1 Design Issues of robust SRAM cells

Figure 1.3 shows the conventional 6T memory cell, which is the fundamental building block of a static RAM. The cell has a single wordline WL and two complementary bitlines BL and BLB. The cell contains a pair of cross-coupled inverters and an access transistor for each bitline. The data are stored on the cross-coupled inverters. If the data is disturbed slightly, positive feedback around the loop will restore it to V_{dd} or ground. The wordline is asserted to read or write the cell. The 6T cell is commonly used in the modern SRAM design because of its compactness. In order to perform
correct read and write operation of the SRAM cell, the ratio between the pull down NMOS N3 and access transistor N1, and the ratio between pull up PMOS P5 and access transistor N1, need to be carefully designed. Prior to the read operation, the bitlines BL and BLB are precharge to V_{dd}. When a SRAM cell is selected for read, the access transistors N1 and N2 are ON. If the SRAM stores a ‘0’, the voltage on node q is 0 and the voltage on node qb is V_{dd}, therefore N3 is ON and N4 is OFF. Devices N3 and N1 form a voltage divider between the bitline BL and ground. Therefore, the voltage on node q will rise to some voltage level and may turn on N4, discharging node qb. To avoid this so called read-disturb problem, the ratio between the pull down NMOS N3 and access transistor N1 should be kept greater than about 1.28 in the CMOS 6T SRAM cell design [16]. Therefore, for the read operation, a minimum cell ratio is required to prevent accidentally writing the SRAM cell. However, larger cell ratios also make it harder to accomplish correct write operation. In order to perform correct write operation, the pull up transistor should not be too strong. Assume that the SRAM cell is storing ‘1’ and it is required to write a new data ‘0’ into the SRAM cell. The node q in Figure 1.3 is going to be low, so the access transistor N1 must be significantly more conductive than the PMOS P5. In the traditional CMOS design, the P5/N1 ratio should not be greater than 1.6 [16]. In this dissertation, the transistor size of the 6T SRAM cell in Figure 1.3 is set to be 160nm/40nm (transistor width/transistor length) for N3 and N4, 80nm/40nm for P5 and P6, 120nm/40nm for N1 and N2. Besides the correct read and write operation, design issues like power, delay, and stability are also very important in SRAM cell design, especially in the nanoscale era, where leakage current and other short channel effects will introduce severe impact on the SRAM cell. On the other hand, SRAM cells, which employ the
smallest transistors possible for density, are extremely sensitive to both systematic
and random process variations.

![Figure 1.4: Voltage transfer characteristics of a CMOS inverter](image)

In this dissertation, the performance of the SRAM cell is evaluated by power
delay product. The Power Delay Product (PDP) is an important figure of merit
and often used to measure and compare the performance of the electronic circuits
quantitatively. On the robustness of the SRAM cell, the static stability is measured

![Figure 1.5: Static Noise Margin (SNM) of a 6T SRAM cell](image)
by the Static Noise Margin (SNM) and dynamic stability of the memory cell which is usually measured by critical charge. During the simulation of the SRAM cell, Monte Carlo simulation, which is a computational algorithm that relies on repeated random sampling to compute the simulation results, is used to investigated the impact of random variations on SRAM robustness.

In a 6T SRAM cell, the data are stored on the cross-coupled inverters. Figure 1.4 shows the voltage transfer characteristics (VTC) of the inverter. The static stability of the SRAM cell is measured by the SNM (the SNM is defined as the maximum value of DC noise voltage that can be tolerated by the SRAM cell without changing the stored bit [64]). The SNM of a SRAM cell is obtained by drawing the VTC of the inverter and mirroring the VTC on the same plot, as shown in Figure 1.5. The maximum possible square between the two-lobed curve, which is called “butterfly curve”, is graphically determined on the plot, and used to determine the SNM. The SNM is defined as the length of the side of the largest square that can be embedded inside the lobes of the butterfly curve. Larger diagonal length means larger SNM. This is the most common way of representing the SNM graphically for a SRAM cell holding data. As shown in Figure 1.5, the worst case scenario of the cell static stability is when the cell is in read operation. The internal node of the SRAM cell that stores a ‘0’ gets pulled up due to the voltage divider from bitline to ground, which is called read disturb problem mentioned above. This increase in voltage severely degrades the SNM during the read operation (read SNM), as shown in Figure 1.5. The degradation of SNM limits voltage scaling for SRAM designs. Many approaches have been proposed to improve the SNM and will be discussed in the following chapters.

When a SRAM cell is holding data, a carbon or nitrogen atom can release a
neutron from the atom’s nucleus if a cosmic ray collides with oxygen. If such neutron then collides with a silicon atom, it can split the atom’s nucleus into smaller charged particles. Moreover, if the silicon atom is in a semiconductor memory, the charged particles can change the contents of a memory cell, yielding a so-called “soft error”. [7] With technology scaling, the soft-error rate is expected to be significantly higher for deep submicron/nano SRAMs due to the lower V_{dd} and smaller node capacitance. The critical charge (Q_{crit}) is a well-known parameter used in the soft-error domain and is defined as the minimum charge collected by a node that makes an SRAM cell flip [31]. It is related to the dynamic response of the memory cell to a dynamic perturbation and is a useful parameter to evaluate its dynamic robustness. Impact area is also very important factor during the dynamic robustness analysis, however, in this dissertation, only critical charge is considered as the metric for the dynamic robustness of the SRAM cell.

![Figure 1.6: Conventional latch cell](image)

1.1.2 Design Issues of robust latches

Figure 1.6 shows the conventional latch cell, which is a fundamental building block of the sequential logic. A CMOS transmission gate T1 is used to offer rail-to-rail swing at the storage node. The NCLK clock is the complementary clock signal which
can be locally generated from CLK through an inverter. When the clock CLK is ‘1’, the input transmission gate T1 is ON, the feedback tristate is OFF, and the latch is transparent. When the clock CLK is ‘0’, the input transmission gate T1 turns OFF and the feedback tristate turns ON, holding ln1 at the correct level. When determining the size of the latch cell, the driving strength of the transparent path should be strong enough so that the data can be easily transferred from the data input to output when clock CLK is ‘1’. Furthermore, the data must be held stable for a minimum set-up of data input to the clock. Therefore, the inverter I1 is made to be stronger than the feedback inverter I3 for performance and power consideration.

Similar to the 6T memory cell, the cross-coupled inverter configuration in the latch cell is very vulnerable to soft errors in nanoscale era. α-particles and cosmic ray particles is one of the important noise sources that may cause a storage node to lose its state. Once a particle strikes a silicon, it generates electron-hole pairs along its track, and some of them are collected by a nearby junction. The collected charge causes a voltage change on the storage node. Hardening approaches such as increasing the capacitance of the storage node can improve the robustness of the latch and the hardening approaches will be discussed in this dissertation.

Besides robustness of the latch cells, the performance of the latches is also considered. The performance of the latches are compared based on simulations of the switching characteristics of each latch for different values of data setup as proposed in [78], i.e.

$$D = T_{setup} + D_{C-Q}$$ \hspace{1cm} (1.1.1)

D_{C-Q} is the propagation delay of the latch from the clock signal CLK to the
output Q. T_{setup} is the minimum time between a change in the data signal and the trailing edge of the clock signal such that the new value of D can propagate to the output Q of the latch and stored in the latch during the non-transparent phase. For T_{setup} and D_{C-Q}, the max delay between positive and negative transitions (i.e. the larger value between a high to low transition and a low to high transition) is selected as the performance metric for latch.

1.2 Previous Work

One of the most serious threats to long-term SRAM viability in scaled processes is cell static stability, how to maintain both cell read stability and write ability. The read static noise margin (SNM) is often used as a measure of the cell read stability [64]. Simulation has shown that the SNM of the conventional 6T cell shown in Figure 1.3 degrades due to lower V_{dd} and larger variation at nanoscale. There are a few techniques to extend the viability of the conventional 6T SRAM cell to lower supply voltages and scaling. For example, lower bitline precharge voltage [9] and boosted cell voltage [46] can improve read SNM. However, in the long term, whether the 6T cell is the optimal cell topology choice in nanoscale processes is still an open question. Several configurations have been proposed to improve the SNM by adding separate read access structures to the original 6T configuration, thus making the read SNM equal to the hold SNM [17], [8], and [34]. There are a number of attractive alternate cell topologies that, while they do require more area and/or devices per cell, may achieve higher overall bit density because they require less peripheral circuitry.

Besides traditional bulk CMOS based approach, using alternate or emerging technologies offers some promising solutions as well. For example, process variations
are less severe in SOI than in bulk CMOS [29], and FinFET-based SRAM cells can offer improved characteristics [23]. Meanwhile, as the technology continues scaling down, physical phenomena and technology limitations may prevent the continued improvements in figures of merit such as low power and high reliability. Ballistic transport operation and low off current make the CNTFET a suitable device for high performance and increased integration density of SRAM design. Moreover, the MOSFET-like model of the CNTFET is likely to be scalable down to 10nm channel length, thus providing a substantial performance and power improvement compared to the MOSFET model (with minimum channel length of 32nm [74]). Therefore, a SRAM design implemented using CNTFETs requires a significantly smaller area than its CMOS counterpart. A resistive-load CNTFET-based SRAM cell has been proposed in [6].

With scaling, hard and soft errors in SRAM will increase in frequency and scope, so that a single error event is more likely to cause failures on the storage elements, such as memories and latches. There are a number of causes of soft errors including energetic particle strikes, signal or power-supply noise coupling, and erratic device behavior [53]. To combat hard and soft errors, designers currently employ a number of techniques, including error-correcting codes (ECCs) [21], bit-interleaving [45], and redundancy [76]. These hardening methods add system level overhead and power dissipation. Design hardening techniques at circuit level can developed to achieve immunity to upsets. They can avoid the error latency and performance loss of system design hardening solutions. Hardened design approaches can be classified into two broad categories [47]. In the first category, hardening is achieved in the design by increasing the capacitance of some nodes, or the strength of the transistors through a
novel design. Such an approach must be scaled with the feature size of the employed technology and may result in unwanted penalties with respect to performance (i.e. an increase in delay) and power dissipation. For this category of hardening designs, capacitors in SRAM cells can be utilized to absorb the excess charge [59] [68]. In the second approach, the storage cells are designed to be insensitive to TFs, so independent of both the size of the cell’s transistors and the capacitance of the cell’s nodes. These approaches have the advantage of technology independence, but they may incur in a high design overhead due to the additional circuitry. An example of the approach in the second category has been reported in [13] and is commonly known as DICE.

Besides memory cells, data latches are used in latch chains and as separate logic gates for data manipulation and storage and must have a good tolerance to soft errors. Many error tolerant methods for soft errors occurring in latches of logic circuits have been proposed. Approaches using Schmitt triggers and/or innovative feedback arrangements are utilized to protect latches from transient faults [44] [63]. Another hardening approach employs a standard path-exclusive latch and a DICE-like redundant clocked keeper to achieve a high SER-tolerance [26].

1.3 Dissertation Outline

As microprocessors are becoming larger and more complex, a larger portion of the die is dedicated to caches and latches. The robustness of the storage elements is very important as those storage elements that need to store correct data. SRAMs comprise a significant percentage of the total area and total power for many digital chips. Therefore, in the first three sections, the robust design of the memory cell will
be discussed.

In Chapter 2, a novel nine transistor (9T) CMOS SRAM cell design at 32nm feature size is presented to improve the stability, power dissipation, and delay of the conventional SRAM cell along with detailed comparisons with other designs. An optimal transistor sizing is established for the proposed 9T SRAM cell by considering stability, energy consumption, and write-ability. As a complementary hardware solution at array-level, a novel write bitline balancing technique is proposed to reduce the leakage current. A new metric that comprehensively captures all of these figures of merit (and denoted to as SPR), is also proposed; under this metric, the proposed 9T SRAM cell is shown to be superior to all other cell configurations found in the technical literatures. The impact of the process variations on the cell design is investigated in detail.

In Chapter 3, instead of using CMOS, a new design of a highly stable and low-power SRAM cell using carbon nanotube FETs (CNTFETs) that utilizes different threshold voltages for best performance is proposed in this chapter. In a CNT, the threshold voltage can be adjusted by controlling the chirality vector (i.e. the diameter). In the proposed 6T SRAM cell design, while all CNTFETs of the same type have the same chirality, N-type and P-type transistors have different chiralities, i.e. a dual-diameter design of SRAM cell. The SPR metric is also used in this chapter to captures figures of merit like stability, power dissipation and write time. Finally, the sensitivity of the CNTFET SRAM design to process variations is assessed and compared with its CMOS design counterpart.

Both Chapter 2 and Chapter 3 focus on improving the static stability, which is measured by the static noise margin (SNM). In Chapter 4, dynamic stability of the
memory cell, which is usually measured by critical charge, is investigated. Higher critical charge means better tolerance to soft errors for the memory cells. In this chapter, a new 14T design for hardening CMOS memory cell at the nano feature size of 32nm is proposed first. By separating the circuitry for the write and read operations, both static stability and dynamic stability of the proposed cell configuration have increased compared with conventional designs. Another hardening approach, which belongs to different category, is then proposed. The feedback loop of the proposed hardened memory cell is blocked and by utilizing novel access and refreshing mechanisms, the proposed 11T memory cell is totally tolerance to single node upset. Multiple node upset analysis is then performed on the hardened memory cells and a novel 13T memory cell configuration is proposed, analyzed, and simulated to show a better tolerance to the likely multiple node upset, i.e. a transient or soft fault affecting two nodes in a cell. Monte Carlo simulation confirms the excellent multiple node upset tolerance of the proposed 13T hardened storage elements in the presence of process, voltage, and temperature variations in their designs.

As another major storage element in the VLSI circuit design, hardened latch design has also been investigated in our work. Three new hardened designs for CMOS latches at 32nm feature size are proposed in this dissertation; two of these circuits are Schmitt trigger based, while the third one utilizes a cascode configuration in the feedback loop. A novel design metric (QPAR) for latches is introduced to assess the overall design effectiveness such as area, performance, power, and soft error tolerance. Multiple node upset analysis is also performed on the hardened latches and the results show that the hardened latches with a high critical charge have a better multiple node upset tolerance.
Finally, Chapter 6 summarizes the key findings and contributions of this dissertation, and proposes some recommendations for future work.
Chapter 2

Analysis and Design of CMOS SRAM Cell for Low Leakage and High Stability

2.1 Introduction

Advances in chip design using CMOS technology have made it possible to design very dense chips that deliver high performance at low power consumption. To achieve these objectives, the feature size of CMOS devices has been dramatically scaled to smaller dimensions. Over the last few years, devices at 45nm have been manufactured and the deep sub-micron/nano range of 32nm is foreseen to be reached in the near future as technology continues to scale down.

Power and density have become the key limitations in many designs as nanoscale devices are becoming a reality at rapid pace. Today’s high performance integrated circuits consume more than 40% of the total active mode power due to leakage currents. Furthermore, leakage is the only source of power consumption in idle circuit. For the foreseeable future, SRAM will likely remain the embedded memory technology of choice for many microprocessors and systems on chips (SoC) due to its speed
and compatibility with standard logic processes [11]. With the advent of SoC, the design of power efficient SRAM structures has become highly desirable. One of the most effective approaches to meet this objective is to design SRAM cells that operate in ultra-low power mode. The decrease in supply voltage reduces the dynamic power quadratically and the leakage power is reduced linearly to the first order [35]. However, with an aggressive scaling in technology as predicted by the Industry Technology Roadmap (ITR), substantial problems have already been encountered when the conventional six transistors (6T) SRAM cell configuration is utilized at an ultra-low power supply, because this cell shows poor stability at very small feature sizes. Moreover, the small static noise margin makes the memory susceptible to radiation and errors in data retention. SRAM cell configurations with more than six transistors to reduce leakage power and improve stability have been proposed in [17], [8], and [34]. An 8T cell [17] employs two more transistors to access the read bitline. Two additional transistors (thus yielding 10T cell designs) are employed in [8] and [34] to reduce the leakage current. However, those previous researches still do not provide a complete viable solution for low power application on nanoscale technology due to leakage power, cell area overhead, and stability issues.

In this chapter, a nine transistors (9T) SRAM cell is presented, and the presented 9T SRAM cell is more amenable than previous configurations to small feature sizes encountered in deep sub-micron/nano bulk CMOS technology. Simulations have been performed using Berkeley Predictive Technology Model at 32nm [52]. Compared with the 8T and 10T cells of [17], [8], and [34], the proposed 9T scheme offers significant advantages in terms of power consumption and leakage. An optimal transistor sizing is found for the proposed 9T SRAM cell to increase stability and critical charge, thus
tolerating soft errors. An innovative precharging and bitline balancing scheme for the
write operation of the 9T SRAM cell is utilized for maximum standby power savings
in a memory array. A novel metric that comprehensively captures all of these figures
of merit is also proposed and used for comparison.

2.2 Review of SRAM Cells

2.2.1 Conventional 6T Cell

The conventional SRAM cell consists of 6 transistors (6T) as shown in Figure 2.1. Issues regarding process variations and power supply voltages have been reported for this type of cell [8]. The conventional 6T SRAM cell has been found to be rather unstable for deep sub-micron/nano scale technology. This cell fails to meet the operational requirements due to the low read Static Noise Margin (SNM). When the conventional SRAM cell is in the read operation, the pass gate is turned on and pulls the node that stores the logic ‘0’ (for example, the node identified by q_b in Figure 2.1) to a non-zero value. This decreases the read SNM, especially when a low power supply voltage is utilized. Figure 2.2 shows the hold and read butterfly plot for a 6T SRAM cell at 0.6V. As shown in this figure, the read SNM is very low and is not acceptable for most memory designs. Several configurations have been proposed to improve the SNM by adding separate read access structures to the original 6T configuration, thus making the read SNM equal to the hold SNM [17], [8], and [34].

2.2.2 8T and 10T Cell

To address the reduced read SNM problem, the read and write operations are sepa-

rated by adding read access structures to the original 6T cell, thus increasing the
transistor count to eight. As the read current does not significantly affect the cell value, the read stability of the 8T cell [17], as shown in Figure 2.3, is dramatically increased compared with the original 6T SRAM cell. By using this cell, the read SNM is only determined by the two cross-coupled inverters. The worst-case stability condition encountered previously in a 6T SRAM cell is avoided and a high read SNM is retained. Therefore, the 8T cell has a higher read SNM than the 6T SRAM cell. However, for the 8T structure, the read bitline leakage is significant, especially in the
deep sub-micron/nano ranges. When the column is not accessed, the leakage current through the read access cell may cause a severe voltage drop at the read bitline, thus errors may appear at the output. Since it has not yet been possible to design a high-density SRAM using 8T cells, this has lead to an investigation of other cell configurations such as the 10T structures in [8] and [34] (shown in Figure 2.4 and Figure 2.5) and the 9T structure as proposed in this paper. To prevent the leakage current from the read bitline, a PMOS transistor is added to the read access circuit in the 10T structures. However, by adding a PMOS to reduce the bitline leakage, the 10T SRAM cell suffers from a larger cell area and standby power consumption.

Figure 2.3: 8T SRAM cell

Figure 2.4: 10T SRAM cell in [8]
2.3 Proposed 9T SRAM Cell

2.3.1 9T Cell Scheme

The initial design of this 9T structure has been introduced in [62] and [38]; Figure 2.6 shows the proposed 9T SRAM cell. Similarly to the 8T cell of [17], the configuration from M1 to M6 is unchanged (same as in the 6T SRAM cell). Write access to the cell occurs through the write access transistors and from the write bitlines, WBL and WBLB. Read access to the cell is through the read access transistor and controlled by the read wordline, RWL. The read bitline, RBL, is precharged prior to the read access. The wordline for read is also distinct from the write wordline. The read SNM margin is maintained by retaining the write access circuit. For the 8T cell in [17], a leakage problem has been observed on the read bitline, this may cause data to change during the read operation, i.e. the bitline must be kept high, but it may drop to a low level due to the bitline leakage of other unaccessed cells. This problem limits the 8T cell to low-density applications. In the 9T cell, by adding a NMOS transistor (MN9) between MN7 and MN8, the bitline leakage is significantly reduced by the so-called “stack effect”. The reduced bitline leakage makes it possible to have more SRAM cells on a bitline for high-density SRAM designs. Simulation results in [38]
have shown that 512 bitcells can be connected to the same bitline for 9T SRAM cell case while only 32 8T SRAM cells can be connected to one bitline at 0.6V power supply. With more bitcells on one bitline, less peripheral circuits are needed in the 9T SRAM array design. Therefore, the area of the 9T SRAM block is reduced.

![Proposed 9T SRAM cell for low-power operation](image)

Figure 2.6: Proposed 9T SRAM cell for low-power operation

For high density memory design, the SRAM cell should be sized as small as possible. However, for correct operation a sizing constraint is applied to the conventional 6T SRAM cell shown in Figure 2.1, i.e. the pull-down to the pass gate transistors ratio must be greater than 1.2 to avoid the read-upset problem [16]. However, in the 9T SRAM cell case, when the read is enabled (RWL=1), the read bitline (RBL) is conditionally discharged through the pull-down transistors MN7, MN9, and MN8 depending on the data stored at node qb. The cell node is isolated from the bitline during the read operation, and it retains the hold mode SNM. Therefore, the transistor ratio between MN3 and MN1 can be decreased to achieve better performance. As the pull-down transistors (MN3 and MN4) are the largest transistors, a significant amount of power is saved by scaling down these transistors. As the loading capacitance of the access transistors (MN1 and MN2) decreases, the write delay will also be decreased. At the same time, the write-ability will be strengthened as the ratio between the access transistor and the pull-down transistor is increased.

The power-delay product is commonly used to show the impact of decreasing
the pull-down transistors to improve the performance of the SRAM cell. Figure 2.7 shows the power-delay product of the 9T SRAM cell at 0.6V power supply voltage for various transistor sizes. As the transistor size of MN3 decreases, the ratio between MN3 and MN1 decreases, thus both power consumption and write delay of the SRAM cell decrease due to the reduction in size of the pull-down transistor and the loading capacitance of the access transistors. Figure 2.7 also shows the relationship between the MP5/MN1 ratio and the power-delay product. When the pull-up transistor MP5 or MP6 is large in Figure 2.6, node q or qb can change faster from ‘0’ to ‘1’ at the expense of large power consumption. As the size of MP5 decreases, the power consumption decreases at the expense of circuit performance. Figure 2.7 shows that the least value of the power-delay product of the SRAM cell is achieved when the MP5/MN1 ratio is between 0.83 and 1.17.

![Figure 2.7: Power-delay product plot of the 9T SRAM cell](image)

Although the read-disturb problem is solved by separating the read and write operations, the half-select disturb occurs when the wordline is on (while the column select is off) in the 6T, 8T, 9T and 10T SRAM arrays. This leads to another disturb similar to the read-disturb problem. If the half-select disturb problem is not solved in the 9T SRAM array, then the size of the pull-down transistors MN3 and MN4 cannot
be reduced for better power-delay product performance because the read-disturb still exists. A hardware-based approach proposed in [32] utilizes local write wordlines that are only selected when the write control for the selected block is on. Figure 2.8 shows the conceptual circuit scheme and waveforms of the proposed approach. The local write wordline WWL is generated by the global write wordline signal WWLB and the block select signal BSB. The write access transistors are only accessed when the block is selected for write (BSB is low). Therefore, the local write wordlines are only selected when the write control for the selected block is on, which avoids disturbing un-selected cells on an accessed row for a write operation.

![Local write wordline generation scheme](image)

Figure 2.8: Local write wordline generation scheme

Compared with the 6T differential SRAM, the 9T SRAM cell requires a single ended read port due to the separate read buffer. A single ended read operation requires a larger voltage swing at the read bitline and it provides a larger noise margin. For the 6T SRAM cell array, the differential bitlines must be precharged to V_{dd} by the starting time of clock cycle and one of the bitlines needs to be discharged in every read cycle. However, for the single ended read bitline, the bitline is discharged
only when state ‘1’ is read out. Therefore, the transient probability of the bitline is reduced to half of the conventional SRAM, which reduces the switching power of the single ended bitline. In the SRAM design with differential bitlines, the sense point is set to 50mV, which is significantly lower than the sense point of the single end bitline (half V_{dd}). However, most cells will discharge the bitline at more than 50mV. [48] shows that the average voltage difference between two bitlines is 80% of V_{dd}. Therefore, the dynamic power of the differential SRAM, for example a 6T SRAM cell array, is higher than a single ended SRAM. The simulation results of [48] have shown that the readout power of the differential SRAM array is 25% higher than the single end SRAM array. Furthermore, as the 9T SRAM array allows more bitcells on one bitline, the area and power consumption of the peripheral circuits of the 9T SRAM array are significantly lower than for the 6T SRAM array.

The read operation is important for high performance SRAM design. A 512-row, 128-column cell array has been designed to measure the read access time. For the 6T cell, the read access time is the time required for developing 50mV bitline differential voltage after the wordline is turned on during a read operation [35]. For the 9T cell, the read access time is the time required for discharging the bitline voltage to half V_{dd} after the wordline is turned on during a read operation. HSPICE simulation shows that the read access time of the 6T SRAM cell is 74.60ps while the read access time of the 9T SRAM cell is 82.04ps (at 0.6V power supply voltage [38]). The single ended configuration in the proposed 9T SRAM cell results in a 10% degradation of readout time.
2.3.2 Data Stability and Write-ability

2.3.2.1 Static Noise Margin and Write-ability

The pull-down transistors (MN3 and MN4) are scaled down to reduce power consumption in the previous section, however, they cannot be scaled down too much due to the stability considerations. Proper data retention strength is necessary for the SRAM cell, especially for the proposed 9T cell to operate at ultra-low power supply. The stability of SRAM cell is usually represented by the SNM (the SNM is defined as the maximum value of DC noise voltage that can be tolerated by the SRAM cell without changing the stored bit [64] [12]). The static noise margin (SNM) can be graphically found on the butterfly curve shown in Figure 2.9. Its drawback is the inability to measure the SNM with automatic inline testers directly because the SNM still has to be derived by mathematical manipulation of the measured data after measuring the butterfly curves of the cell. An alternative method to characterize the SRAM stability is based on the N-curve of the cell measured by inline testers [73] [22]. The typical N-curve of the SRAM cell is measured by reading the input current at the internal storage node and by sweeping the storage node voltage from 0V to V_{dd}.

Two common metrics for the SRAM cell static noise margin are the static voltage noise margin (SVNM) and the static current noise margin (SINM), and they are found on the N-curve in Figure 2.10. At three points (A, B, and C) of the N-curve, the current at the internal storage node q is zero. A and C correspond to the two stable points of the butterfly curve, while B corresponds to the meta-stable point on the N-curve. When the points A and B coincide, then the cell is at the edge of stability. The voltage difference between the points A and B indicates the maximum tolerable
DC noise voltage at node qb prior to changing its content. This metric is referred to as SVNM.

The peak current between A and B can also be used to characterize the stability of the cell. This metric is referred to as the SINM. SINM is defined as the maximum value of DC current that can be injected in the SRAM cell prior to a change in its content. The voltage is swept from 0V to \(V_{dd} \) at node qb in Figure 2.6 and the N-curves of the 9T SRAM cell at different MN3/MN1 ratios are extracted. Finally, the same voltage sweep is applied to the node qb of the 6T cell shown in Figure 2.1 during read operation. Figure 2.10 shows the N-curves of the SRAM cells for different transistor size ratios. As shown in Figure 2.10, when the MN3/MN1 ratio is 1.00, the SINM of the 9T cell is larger than the read SINM of the 6T cell (the larger SVNM of the 9T cell is retained due to the separate read and write operations). Table 2.1 shows the worst case noise margin comparison between the 6T SRAM cell with MN3/MN1=1.33, the 8T SRAM cell with MN3/MN1=1.33, and the 9T SRAM cell with MN3/MN1=1. The 6T SRAM cell has very small noise margin in terms of SNM, SVNM, and SINM, while the noise margins of the 8T and 9T SRAM cells are higher even in the worse case.

![Figure 2.9: Butterfly plot and N-curve of the SRAM cell](image)
Figure 2.10: N-curve of the 9T SRAM cell with different MN3/MN1 ratios

Table 2.1: Noise margin comparison at 0.9V Power Supply, Slow Corner, and 100° C Temperature

<table>
<thead>
<tr>
<th>SRAM cell</th>
<th>SNM</th>
<th>SVNM</th>
<th>SINM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T SRAM cell (MN3/MN1=1.33)</td>
<td>28.3mV</td>
<td>208mV</td>
<td>5.89μA</td>
</tr>
<tr>
<td>8T SRAM cell (MN3/MN1=1.33)</td>
<td>395.9mV</td>
<td>360mV</td>
<td>87.09μA</td>
</tr>
<tr>
<td>9T SRAM cell (MN3/MN1=1.00)</td>
<td>367.7mV</td>
<td>371mV</td>
<td>68.15μA</td>
</tr>
</tbody>
</table>

The N-curve is also used for assessing the write-ability of the cell, because it provides a measure for the driving current in the write operation [22]. The write-trip current (WTI) is the negative peak between the points B and C in Figure 2.9 when the cell is accessed and both bitlines are kept at \(V_{dd} \). Therefore, it specifies the amount of current required for writing, this is the current margin of the cell when its content changes. The smaller the absolute value of WTI is, the easier to write into the SRAM cell. Figure 2.11 shows that the absolute value of WTI decreases as the pull-up transistor MP5 decreases, i.e. it is easier to write a ‘0’ into the SRAM cell.
with smaller pull-up transistors. A good write-ability of the SRAM cell ensures the write drivers and access transistors to overpower the load inside the cell. To increase the write-ability, the pull-up transistors MP5 and MP6 should be sized as small as possible. However, a good write-ability means that the data-holding capability of the SRAM cell degrades (possibly leading to soft errors), and this may make SRAM cells rather unstable at low power supply. The dynamic stability analysis described in the next section can be used to find the optimum pull-up transistor sizing for robust operation with respect to both good write-ability and resilience to soft errors.

2.3.2.2 Soft Errors and Dynamic Stability

In this section, soft error tolerance and dynamic stability are analyzed for the proposed SRAM cell.

The robustness of SRAMs against soft errors can be assessed by considering the critical charge, Q_{crit} [31]. Q_{crit} is the minimum amount of charge necessary to disturb the sensitive node of a SRAM cell. It exhibits an exponential relationship with the soft error rate. Therefore, Q_{crit} should be as high as possible to limit the soft error rate.

To determine the critical charge for a SRAM cell, a current generator is applied (through HSPICE) to the storage node of the SRAM cell (q and q_b in Figure 2.6) as an equivalent noise source to the transient noise when the cell is holding data. The pull-up PMOS transistor (MP5) is significantly weaker than the driver NMOS (MN3) due to the lower W/L ratio and low mobility, this makes the node storing a ‘1’ weaker and more susceptible to soft errors than the node storing a ‘0’. The critical charge, Q_{crit}, is estimated only at specific nodes having a low Q_{crit}. For the 6T SRAM cell in Figure 2.1, the nodes q and q_b have the same Q_{crit} due to symmetry in the structure.
However, in the 9T SRAM cell proposed in Figure 2.6, the node with the lowest Q_{crit} is node q due to asymmetry in the 9T cell configuration.

Therefore, a current generator is applied to the node storing a ‘1’ to determine the critical charge Q_{crit} in the worst case. The minimum total charge Q_{crit} can be found by finding the integrated current applied to the node storing a ‘1’ to change the content of the cell. Figure 2.11 shows the critical charge of the 9T SRAM cell for different MP5/MN1 ratios.

![Figure 2.11: Write-trip current and critical charge of the 9T SRAM cell](image)

The tolerance of a SRAM cell to soft errors is enhanced by increasing the pull-up transistor size. It is important to find the pull-up transistor size by considering the conflicting constraint of write-ability and dynamic stability of the cell. As shown in Figure 2.11, if a good write-ability is desired, the MP5/MN1 ratio should be as small as possible. However, if good soft error immunity is desired, the MP5/MN1 ratio should be as large as possible. However, MP5/MN1 is related to other design metrics such as power delay product, critical charge, write-trip current, and area. In this proposed design, to find the optimal design points considering all the design metrics mentioned above using the simulation data shown in Figure 2.7 and Figure 2.11, the
proposed 9T SRAM cell uses the MP5/MN1 ratio of 0.67 to retain a high critical charge (compared to a cell with very weak pull-up transistors) and a low absolute value of WTI (compared to a cell with very strong pull-up transistors).

For the proposed 9T SRAM cell at 32nm feature size, this section has established the transistor size ratios (between the pull-up PMOS, the pull-down NMOS, and the access transistors) for low-power, best static and dynamic stability, and write-ability. These figures of merit (power, stability, and performance) are optimized in the proposed 9T SRAM cell when MP5/MN1 = 0.67 and MN3/MN1 = 1.00. Figure 2.12 shows the 9T SRAM cell with the transistor sizes found in this section.

![Proposed 9T SRAM cell](image)

Figure 2.12: Proposed 9T SRAM cell with transistor sizes in W/L (nm)

2.3.2.3 Area

The layouts of the conventional 6T and 9T SRAM cells are drawn based on MOSIS deep sub-micrometer design rules [66] as shown in Figure 2.13 and Figure 2.14. For the 6T SRAM cell shown in Figure 2.1, the ratio of 1.33 is used for M3 and M1, and M1 and M5 have the same sizes as MN1 and MP5 shown in Figure 2.6 and Figure 2.12. In Figure 2.13 and Figure 2.14, 3x2 SRAM cell arrays of 6T and 9T SRAM cells are shown to demonstrate that the SRAM cell can be integrated into an array design. General scaling has been applied to the MOSIS rule to scale the area of the SRAM cells to 32nm feature size by a factor of $1/S^2$. With the scaling factor, the
area of the 6T cell layout at a 32nm feature size is 0.1899\(\mu\)m\(^2\), while the area of the proposed 9T SRAM cell with optimal sizing at 32nm feature size is 0.2331\(\mu\)m\(^2\). The area of the proposed 9T SRAM cell is increased by 22\% comparing to 6T SRAM cell when the previously described transistor sizing process is used. The area increase is not due to the additional read bit line but to the additional transistors. The area of the proposed 9T SRAM cell is exactly same as the 8T SRAM cell.

![Figure 2.13: Layouts of a 3x2 cell array of the 6T SRAM cells](image)

![Figure 2.14: Layouts of a 3x2 cell array of the proposed 9T SRAM cells](image)

In the traditional differential SRAM, a large area overhead is accounted due to the differential sense amplifiers (compared with the single ended design). In the single ended design, the readout circuit only consists of an inverter and a compensation keeper [48]. Furthermore, the proposed 9T SRAM cell is designed for low-power
supply and high-density. As reported in [38], both 10T cell in [8] and the proposed 9T cell can be used in high-density memory designs to reduce the area overhead due to the peripheral circuitry. Compared with its 10T cell counterparts, the 9T SRAM cell has an area reduction of 16.7%, which makes the proposed 9T cell configuration viable for high-density design. Therefore, in the proposed 9T SRAM design, less peripheral circuits are required and the overall area is saved.

2.3.2.4 Standby Power Reduction

In a short channel device, the drain-induced barrier lowering (DIBL) has a significant impact on the subthreshold current. Moreover, the source and drain depletion width in the vertical direction and the source drain potential have a strong effect on the band bending over a significant portion of the device. Consequently, the threshold voltage and the subthreshold current of short-channel devices vary with the drain bias. This effect is referred to as DIBL [1] [60]. When a high drain voltage is applied to a short-channel device, it lowers the barrier height, resulting in a further decrease of the threshold voltage. As the threshold voltage decreases, the subthreshold leakage current increases exponentially. DIBL is enhanced at high drain voltages and shorter channel lengths. When the 9T SRAM cell in Figure 2.6 stores ‘0’ (this is the worst-case leakage current scenario for the 9T SRAM cell), the sub-threshold current of MN1 is very high due to the large voltage difference between WBL and node q. This leakage current can be reduced by lowering the voltage at WBL.

In a conventional 6T SRAM design, following a write operation, both bitlines must be restored to V_{dd} to ensure a successful read operation. The write amplifier circuitry of [16] ensures that the selected bitline is back to a “high” value by generating a negative pulse to precharge the selected bitline high after driving the bitline low to
write ‘0’ into the SRAM cell. Therefore, both bitlines (WBL and WBLB in Figure 2.6) will be restored to a “high” state after the write operation. When the SRAM cell stores a ‘0’, the voltage difference between the drain and source of MN1 is V_{dd}, i.e. a large subthreshold current from WBL to ground will be present when the SRAM cell is in the standby mode.

The subthreshold current from WBL to ground can be reduced exponentially by lowering the voltage at WBL in the standby mode. In this paper, the 9T cell configuration is complemented with a solution at circuit-level for bitline balancing. The new “write bitline balancing” circuitry is shown in Figure 2.15. Figure 2.16 shows the simulation results at a power supply voltage of 0.6V. When the WR_EN
signal is enabled, the NMOS transistor NM1 is turned off, and a negative pulse is generated to precharge the bitline (that is going to be in the “high” state for a fast write). There is sufficient time to precharge the high rising bitline to a proper “high” state prior to accessing the SRAM cell because the WR_EN signal always arrives faster than the WWL and SEL signals. After the write operation, the WR_EN signal is removed from the column and NM1 is turned on to balance the voltage at both bitlines to half the value of V_{dd}. Therefore, the sub-threshold current from WBL to ground decreases exponentially due to the reduced V_{ds} of the access transistor MN1. Furthermore, for the write amplifier circuitry in [16], the bitline voltage drops in the standby mode due to the leakage in the SRAM cell and this will increase the write delay. By employing the proposed write circuitry, the bitline leakage problem is significantly reduced. Therefore, this scheme provides an efficient solution to leakage at array-level.

For comparative evaluation, a 1x128 SRAM cell array operating at power supply voltage of 0.6V is used to assess the power dissipation of 6T and 9T cell arrays in standby mode. All the simulation results are obtained by using Berkeley Predictive Technology Model at 32nm [52]. The transistor sizes of the 6T and 9T SRAM cell are the same. As shown in Table 2.2, the 9T SRAM array with the proposed write bitline balancing circuit achieves a significant power reduction at the three different process corners, i.e. power savings of 33%, 20%, and 29% at typical, fast, and slow corners, respectively. Therefore, the subthreshold leakage is reduced both at cell-level and at array-level (by using the novel balancing circuitry as proposed in the previous section).
2.4 A Metric for Memory Cells

To compare the different memory cell configurations found in the technical literature with the 9T cell of this paper, a novel metric is introduced in this section. This is required to comprehensively assess the performance (as a function of the delay), stability (with respect to noise) and power dissipation within a single yet comprehensive metric that relies on the simulation results of the previous sections.

It has been shown in [22] that SNM and SINM must be both used when considering the static stability of a SRAM cell. Therefore, SNM and SINM can be multiplied together, thus yielding a comprehensive figure of merit as the Static Power Noise...
Table 2.2: Power dissipation comparison at 0.6V Power Supply and Room Temperature

<table>
<thead>
<tr>
<th>SRAM cell</th>
<th>Slow Corner</th>
<th>Typical Corner</th>
<th>Fast Corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T SRAM cell array</td>
<td>220.54nW</td>
<td>832nW</td>
<td>3.92μW</td>
</tr>
<tr>
<td>8T SRAM cell array</td>
<td>318.72nW</td>
<td>946nW</td>
<td>4.05μW</td>
</tr>
<tr>
<td>9T SRAM cell array without proposed bitline balancing circuit</td>
<td>296.90nW</td>
<td>903nW</td>
<td>3.99μW</td>
</tr>
<tr>
<td>9T SRAM cell array with proposed bitline balancing circuit</td>
<td>176.26nW</td>
<td>547nW</td>
<td>2.81μW</td>
</tr>
</tbody>
</table>

Margin (SPNM), as first proposed in [22]. The Power Delay Product (PDP) is also an important figure of merit and often used to measure and compare the performance of the electronic circuits quantitatively. For SRAM cell, the standby power consumption is of major concern while the write delay gives an indication of the cell’s write ability. Therefore, the PDP for the SRAM cell of this paper is the product of the standby power and the write delay.

The proposed new metric combines the above figures of merit. For a high stable design, the SPNM should be as high as possible. However, for high performance and low power, the PDP should be as low as possible. The proposed new metric is given by dividing the SPNM by the PDP and this is referred to as the SPNM to PDP Ratio (SPR) [61]. The SPR (in units of 1/Secs or Hz) can be expressed as follows:

\[
SPR = \frac{SNM \times SINM}{Power \times Delay}
\]

Eq. (2.4.1) implies that the SPR provides a metric for high stability, high performance (low delay) and low power in memory cells. The decrease in write delay implies that it is easier to write data into the SRAM cell. Therefore, the stability of
the SRAM cell is decreased. An improvement in delay performance usually requires larger transistors, thus increasing power consumption. So, it is often needed to comprehensively assess performance as a function of delay and stability with respect to noise, and use power dissipation as a single metric. The proposed SPR provides a comprehensive metric for a SRAM cell in terms of delay, stability, and power. The proposed SPR also contains information on the cell’s area. As the area of the memory cell increases, the power delay product of the memory cell will increase due to the increase of node capacitance, causing a decrease in SPR. It is important to note that a small increase in area changes little the combined power-delay product for a cell. However, as the area gets further increased, the power delay product will increase.

Figure 2.17: SPRs of different SRAM cells

Simulations have been performed using Berkeley Predictive Technology Model at 32nm [52]. Figure 2.17 gives the SPRs of the proposed 9T SRAM cell, a conventional
6T SRAM cell, the 8T SRAM cell of [17], the 8T SRAM cell of [17] with the proposed bitline balancing circuit of Figure 2.15, the 9T SRAM cell of [43] (denotes as High-Stable Low-Leakge (HSLL) 9T SRAM cell) and the HSLL 9T SRAM cell with the same optimized 32nm transistor sizing (as established previously) at 0.6V power supply, typical corner and room temperature. For the 8T SRAM cell, the cell size is the same as the 9T SRAM cell in Figure 2.12 but without MN9. Among the SRAM cells, the proposed 9T SRAM cell with optimum transistor sizing and the novel write bitline balancing circuit has the best SPR, i.e. the proposed 9T SRAM cell achieves high stability as well as low power and high performance. Compared with the proposed 9T SRAM cell, a 6T SRAM cell has low power, but also low SNM and SINM. 8T SRAM cell shows lower SPR due to its high standby power. The utilization of the proposed bitline balancing circuit to this cell configuration improves the SPR, but it is still lower than for the 9T cell. It should be noted that the HSLL 9T SRAM cell achieves a high SNM and extra low power but it has a low SINM and a low circuit speed, thus achieving a low SPR.

Figure 2.17 confirms that the proposed 9T cell configuration has the best SPR, hence attaining low power, high stability, and low delay within the comprehensive metric provided by the SPR.

2.5 Impact of PVT Variations

Systematic and random variations in process, supply voltage, and temperature (PVT) are posing a major challenge to nano-scale integrated circuit design. The demand for low power causes supply voltage scaling, thus making voltage variations a significant design challenge. Furthermore, the need for growth in operational frequency occurs
at high junction temperatures and within die temperature variations. Figure 2.18 shows the static power and write delay product for the proposed 9T SRAM cell using the write circuitry in Figure 2.15 and the conventional 6T SRAM cell design of [16] with inter-die variations. Simulation results show that the 9T SRAM cell has a lower power delay product as well as less sensitivity due to power and temperature variations because the proposed 9T SRAM cell and bitline balancing scheme reduce the leakage power up to 33% without degrading the speed of the memory cell. With the bitline balancing scheme, the subthreshold leakage of the 9T SRAM cell array is significantly reduced. The subthreshold leakage component takes a significant portion of the total power; therefore, the power delay product variation of the 9T SRAM cell is also reduced since the subthreshold leakage is very sensitive to temperature and voltage change.

As CMOS technology scales down into the nano ranges, process variations are a serious concern due to uncertainty in the device and interconnects characteristics. Process variations negatively impact the speed, stability, and power consumption of traditional SRAM designs [11]. In this section, the stability of SRAM cells is evaluated in the presence of process variations, i.e. intra-die variation and local mismatches, in the channel length and the threshold voltage of the transistors. Figure 2.19 and Figure 2.20 show the power-delay product of the 6T SRAM cell and the 9T SRAM cell with variations in mobility, threshold voltage, and velocity saturation, respectively. Figure 2.21 shows the power-delay product of the 6T SRAM cell and the 9T SRAM cell with variations in channel length. At 32nm feature size, channel length and threshold voltage variations have the most significant impact on cell performance while mobility and velocity saturation have the least impact. Monte Carlo analysis on
the stability of the SRAM cells shows that the 6T cell could fail at 0.6V power supply, typical corner, and room temperature in the presence of process variations while the 9T cell has SNM of 240mV and SINM of 23.61\(\mu\text{A}\) at the worst case. Therefore, the 9T cell achieves excellent stability in the presence of process variations.

The impact of the threshold voltage variations, i.e., process variations, on the power consumption of the individual SRAM cell has been assessed by Monte Carlo analysis. The threshold voltage distribution is modeled as a \(\pm 5\%\) Gaussian with variation of threshold voltage at a \(\pm 3\)-sigma level. Simulation results are shown in Figure 2.22, where the power consumption of the 6T SRAM cell decreases as the average threshold voltage increases. In the 9T SRAM cell, the power consumption variation caused by the variation in the threshold voltage is significantly smaller than
Figure 2.19: Power-delay product of the SRAM cells with the variations of mobility, threshold voltage, and velocity saturation for proposed 9T cell

for the 6T SRAM cell case because the subthreshold leakage current is significantly reduced. Figure 2.23 shows the distribution of the power delay product due to process variations, i.e. intra-die variation and local mismatches, including transistor geometry variations, threshold variation, and mobility variation. Unlike the power consumption Monte Carlo analysis due to process variation, more parameters need to be modeled for more accurate power delay product Monte Carlo analysis. Parameter variations are modeled using a ± 5% Gaussian distribution with variations at a ± 3-sigma level for all the parameters. All power delay product results are normalized with respect to the arithmetic mean of the power delay product of the proposed 9T SRAM cell. As shown in Figure 2.23, the power delay product variance of the proposed 9T SRAM cell is also lower compared to the distribution of the 6T SRAM cell. While the bitline voltage is reduced during standby mode by using the balancing circuit of Figure 2.15, very low power consumption and a considerable mitigation of the impact of process variations are accomplished by using the design method for the 9T SRAM cell.
Figure 2.20: Power-delay product of the SRAM cells with the variations of mobility, threshold voltage, and velocity saturation for 6T cell

2.6 Conclusion

In this chapter, a new 9T cell has been proposed, and this new 9T SRAM cell achieves a lower power consumption compared with 8T and 10T cells. This 9T cell is best suited for high density memory design in the deep-submicron/nano range of 32nm.

A new design with an optimal sizing for the 9T cell is presented, by considering the N-curve and increasing the critical charge (for tolerating soft errors). An optimal pull-down to access transistor ratio has been found by considering cell stability and performance. Critical charge and the write-trip current are utilized to determine the optimum pull-up to access transistor ratio. Along with transistor sizing/scaling, an innovative bitline balancing scheme has been utilized to reduce the leakage current at memory array-level. Hence in this proposed memory design, the design is addressed at both cell and array levels. Simulation results have shown that this write scheme for the proposed 9T SRAM cell-based array achieves a substantial reduction in power consumption at a typical process corner compared with a conventional 6T SRAM cell.
Figure 2.21: Power-delay product of the SRAM cells with channel length variations

based array. HSPICE simulation results confirm that the proposed scheme achieves a 33% power saving compared to the conventional SRAM array based on the 6T cell configuration. The simulation results have also confirmed that the proposed cell is highly stable and resilient to soft errors.

A new comprehensive metric for SRAM cells (denoted as SPR) has then been proposed. SPR is a composite performance measure in terms of high stability, low power and low delay. The proposed 9T SRAM cell has the best SPR among all cell configurations found in the current literature.

Finally, the impact of parameter variations on the power delay product has been analyzed; the simulation results show that the 9T SRAM cell offers superior energy and stability performance in the presence of PVT variations. In conclusion, this chapter demonstrates that the novel 9T SRAM cell is a viable solution for highly dense and low power memory design at the nano range of 32nm.
Figure 2.22: Distribution of the SRAM cell power dissipation due to threshold voltage variations for a) 6T cell; b) proposed 9T cell
Figure 2.23: Power-delay product distributions of the 6T and the proposed 9T cell due to process variations.
Chapter 3

Analysis and Design of CNTFET SRAM Cell for Low Leakage and High Stability

3.1 Introduction

At nano feature sizes, scaling has resulted in increased short-channel effects, reduced gate control, exponentially rising leakage currents, severe process variations, and high power density. As today’s VLSI systems mostly rely on silicon MOS technology, the Industry Technology Roadmap (ITR) has predicted that in the nano regimes, the expected high density will encounter substantial difficulties in terms of physical phenomena and technology limitations, possibly preventing the continued improvements in figures of merit such as low power and high reliability. Nanoscaled alternatives to bulk silicon transistors are therefore being pursued. Ultra thin body devices such as FinFETs have received an increasing attention in recent years [69]. Furthermore, new materials and devices have been investigated to replace silicon in nanoscaled transistors from the year 2015 and beyond (as per ITR prediction). Carbon nanotube transistors (CNTFETs), for example, are promising due to their unique one-dimensional
band-structure that suppresses backscattering and makes near-ballistic operation a realistic possibility [55] [2] [25] [42].

Design of fast and power efficient memory structures continues to be of the highest priority, and ballistic transport operation and low off current make the CNTFET a suitable device for high performance and increased integration density of SRAM design. Moreover, the MOSFET-like model of the CNTFET is likely to be scalable down to 10nm channel length, thus providing a substantial performance and power improvement compared to the MOSFET model (with minimum channel length of 32nm [74]). Therefore, a SRAM design implemented using CNTFETs requires a significantly smaller area than its CMOS counterpart. A resistive-load CNTFET-based SRAM cell has been proposed in [6]. However, large off-chip resistors (i.e. 100MΩ) are needed in the configuration due to the current requirements of the CNTFETs. This resistive-load CNTFET-based SRAM cell design is modified with P-type transistors as active load to address this problem as proposed in this chapter.

The use of transistors with multiple threshold voltages (i.e. a so-called multi-threshold design) is widely utilized in today’s CMOS circuits to improve performance. The threshold voltage can be changed by applying different bias voltages to the bulk terminal of the CMOS transistors. The threshold voltage of CNTFET is determined by the CNT diameter. Therefore, CNTFETs with different threshold voltages can be accomplished by growing CNTs with different diameters (chiralities).

In this chapter, a CNTFET-based SRAM cell design with optimized threshold voltages is proposed, assessed, and compared to the CMOS implementation of the same cell. Different diameters (and therefore chirality) are utilized for the two types
of CNTFETs (i.e. N or P). The optimum chirality is selected to achieve the best-combined performance in terms of stability, power consumption, and write time of the CNT-based SRAM cell. The write operation of the SRAM cells is evaluated using the novel comprehensive metric denoted as “SPR”. The analysis and simulation for systematic and random process variations are also performed to demonstrate that the CNTFET memory cell is less susceptible to random variations than its CMOS counterpart.

3.2 Carbon Nanotube Field Effect Transistor

Carbon Nanotube Field Effect Transistors (CNTFETs) utilize semiconducting single-wall CNTs to assemble electronic devices; CNTFETs have been shown to have similar properties to MOSFETs. A single-wall carbon nanotube (or SWCNT) consists of only one cylinder, and the simple manufacturing process of this device makes it a very promising alternative to today’s MOSFET. An SWCNT can act as either a conductor or a semiconductor depending on the angle of the atom arrangement along the tube. This is referred to as the chirality vector and is represented by the integer pair \((n, m)\) [74]. A simple method to determine if a carbon nanotube is metallic or semiconducting is based on considering the indices \((n, m)\), i.e. the nanotube is metallic if \(n=m\) or \(n-m=3i\) where \(i\) is an integer. Otherwise, the tube is semiconducting. The diameter of the CNT can be calculated from [74] as a function of \(m\) and \(n\). Figure 3.1 and Figure 3.2 show the schematic diagram of the CNTFET [74]. Similar to the silicon device the CNTFET has four terminals, a dielectric film is wrapped around a portion of the undoped semiconducting nanotube, and a metal gate surrounds the dielectric. Figure 3.3 shows the equivalent circuit model implemented in HSPICE as
proposed in [74]. Heavily doped CNT segments are placed between the gate and the source/drain to allow for a low series resistance during the on-state [5]. As the gate potential increases, the device is electrostatically turned on or off via the gate.

The current-voltage (I-V) characteristics of the CNTFET are shown in Figure 3.4, and they are similar to those of MOSFET. The CNTFET device current is saturated at higher V_{ds} (drain to source voltage) as channel length increases as shown in Figure 3.4, and the on-current decreases due to energy quantization in the axial direction at 32nm (or less) gate length [74]. The threshold voltage is defined as the voltage required to turn on the transistor, and the threshold voltage of the intrinsic CNT channel can be approximated to the first order as the half bandgap which is an inverse function of the diameter [74]:

$$V_{th} \approx \frac{E_g}{2e} = \frac{\sqrt{3}}{3} \frac{\alpha \times V_\pi}{e \times D_{CNT}}$$

(3.2.1)

where $\alpha = 2.49$ Å is the carbon to carbon atom distance, $V_\pi = 3.033$ eV is the carbon $\pi-\pi$ bond energy in the tight bonding model, e is the unit electron charge, and D_{CNT} is the CNT diameter. Then, the threshold voltage of the CNTFETs using $(19, 0)$ CNTs as channels is 0.289V because the D_{CNT} of a $(19, 0)$ CNT is 1.49nm. Simulation results have confirmed the correctness of this threshold voltage. As the chirality vector changes, the threshold voltage of the CNTFET will also change. The threshold voltage of the CNTFET is inversely proportional to the chirality vector of the CNT. For example, the threshold voltage of the CNTFET using $(13, 0)$ CNTs is 0.423V, while the threshold voltage of the CNTFET using $(19, 0)$ is 0.289V. Figure 3.5 shows the threshold voltage of P-type CNTFET (PCNTFET) with CNTs of different chirality vectors. For N-type CNTFET (NCNTFET), the threshold voltage
is determined similarly to the P-type CNTFET, but having an opposite sign [74].
The threshold voltage of the CNTFET only depends on the chirality vector of the
CNT. Therefore, CNFFETs provide a unique opportunity for threshold voltage con-
trol by changing the diameter of the CNT [57]. Extensive research has been pursued
for manufacturing well-controlled CNTs [36] [49]. In this chapter, a dual-diameter
CNTFET-based SRAM design is proposed and designed for best performance.

Figure 3.1: Cross sectional view of a carbon nanotube transistor (CNTFET)

Figure 3.2: Top view of a carbon nanotube transistor (CNTFET)
Figure 3.3: Equivalent circuit model for the intrinsic channel region of a CNTFET
Figure 3.4: Current-voltage (I-V) characteristics of a ballistic CNTFET
3.3 Design of 6T SRAM using CNTFET

Figure 3.6 shows the conventional six-transistor (6T) SRAM cell configuration used as the core storage element of most register file and cache designs in CMOS. With today’s aggressive scaling, substantial problems such as power consumption and stability have already been encountered when the 6T SRAM cell configuration is utilized in CMOS at nanoscale ranges. In this chapter, the 6T SRAM cell of Figure 3.6 is designed using CNTFETs (shown in Figure 3.7) and its performance is assessed comprehensively with a newly proposed figure of merit denotes as “SPR” to compare stability, power dissipation, and write time with other existing SRAM cell designs. The basic design concept of the CNTFET-based memory has been proposed in [39] previously, and this chapter presents the actual design of the concept addressing the realistic design challenges and issues such as performance, Static Noise Margin (SNM), power consumption, and tolerance to PVT variations.
3.3.1 Read Operation

Prior to the read operation, BL and BLB of Figure 3.7 are precharged to high level. When the wordline signal WL is high, the access transistors MN1 and MN2 are turned on, and the data stored in the SRAM is read. However, a read-upset problem is present during the read operation, and this may change the data stored in the SRAM cell. The read-upset problem can be described as follows. Assume that the cell is currently storing ‘1’ so that q is ‘1’ and \(nq \) is ‘0’. When WL is high, MN1 and MN2
are on and the voltage at node \(nq \) will rise. An appropriate sizing ratio between MN4 and MN2 is required to limit the voltage at node \(nq \) to be lower than \(V_{th} \) such that the stored logic value does not change during the read operation. In the traditional CMOS design, the MN4/MN2 ratio should be greater than 1.28 for this requirement [16]. For the CNTFET SRAM design, simulations have been performed to establish the sizing ratio of MN4 and MN2. The gate and source of MN2 are connected to \(V_{dd} \), and the gate of MN4 is also connected to \(V_{dd} \) as the voltage at node \(q \) needs to be set to ‘1’.

The simulation results are shown in Figure 3.8 for various MN4/MN2 ratios and gate lengths. The transistor size ratio of the two CNTFETs is measured as the number of tubes in the two CNTFETs unlike MOSFET. As mentioned in previous section, the threshold voltage of the (19, 0) CNTFET is 0.289V. Therefore, the MN4/MN2 ratio should be kept greater than 0.5 to keep the voltage of \(nq \) below threshold voltage. However, for fair comparisons, the MN4/MN2 ratio used in this proposed design for the CNTFET SRAM design needs to be greater than 1.4 to control the low state voltage below the threshold voltage of the 32nm MOSFET which is 0.18V [52].

![Figure 3.8: MN4/MN2 ratio vs. voltage rise at nq for SRAM cells](image)
3.3.2 Write Operation

During the write operation, the wordline WL is high to allow the data on bitlines BL and BLB to be written into the SRAM cell. For a successful write to a SRAM cell, the pull up transistor should not be too strong. Assume that the SRAM cell is storing ‘1’ and it is required to write a new data ‘0’ into the SRAM cell. The node q in Figure 3.7 is going to be low, so the pass gate MN1 must be significantly more conductive than the PMOS MP5. In the traditional CMOS design, the MP5/MN1 ratio should not be greater than 1.6 [16]. For CNTFET SRAM design, simulations have been performed to establish the size ratio between MP5 and MN1. The bias voltage on the gate of MP5 is kept below V_{th}, and the bias voltage on the gate of MN1 is V_{dd}. Figure 3.9 shows the simulation results for various ratios and channel lengths. Any MP5/MN1 ratio of less than 1.6 can pull node q below 0.289 V, which is the threshold voltage of a CNTFET with (19, 0) nanotubes. Similarly to the read operation, the MP5/MN1 ratio used in this proposed design for the CNTFET SRAM design needs to be less than 1 to ensure that the write voltage at node q is not higher than the threshold voltage of the 32nm MOSFET (i.e. 0.18V).

Therefore, for the proposed dual-diameter CNTFET-based SRAM cell design, the transistor size ratios among the pull up FET, the pull down FET, and the access transistors are MP5/MN1 = 0.5 and MN4/MN2 = 1.5. P-type CNTFETs with one tube are used for MP5 and MP6, while n-type CNTFETs with three tubes are used for MN3 and MN4. The number of tubes used for MN1 and MN2 is two. As the channel length of the CNTFET decreases to 32nm or below, the drain current of the CNTFET decreases due to energy quantization in the axial direction. Phonon scattering in short-channel devices further reduces the on-current [18]. As shown in
Figure 3.4, the drain current of CNTFET decreases dramatically when the channel length is less than 20nm. Therefore, by considering area and performance, a 20nm gate length is chosen in this design for the design of the CNTFET-based SRAM cell.

As the distance between two adjacent tubes within the same device is 20nm and the channel length chosen in this design (as per previous discussion) is also 20nm [74], the dimensions of the pull-up transistor MP5, the pull-down transistor MN3, and the pass gate transistor MN1 are 40/20nm, 80/20nm, and 60/20nm, respectively (40/20nm denotes the width to length ratio). For a CMOS SRAM cell with a transistor length of 32nm and similar circuit performance to the CNTFET SRAM cell proposed in this section, the widths of MP5, MN3, and MN1 are found to be 80nm, 160nm, and 120nm, respectively. Therefore, there are two 80/40nm PMOS transistors, two 160/40nm NMOS transistors and two 120/40nm NMOS transistors in the CMOS SRAM cell. Compared to the CMOS at 32nm feature size, the CNTFET-based SRAM cell has two 40/20nm P-CNTFETs, two 80/20nm N-CNTFETs, and
two 60/20nm N-CNTFETs. These transistors are used in the next section to establish the best operation under the optimized threshold voltages for the dual-diameter CNTFET-based SRAM cell.

3.4 Dual-Chirality SRAM Cell Design

Since the threshold voltage of CNTFET can be controlled by adjusting tube’s diameter, the design of CNTFET-based circuits with different threshold voltages is possible because CNTs can be grown with different diameters [57] [36] [49]. In this proposed SRAM design, N-type and P-type CNTFETs use CNTs that have different chirality vectors for the best (optimized) performance. However, all N-type CNTFETs use CNTs with the same chirality vector and all P-type CNTFETs use the same chirality vector as well (the dual-diameter arrangement is used for simplicity, although additional threshold voltages could also be utilized by using CNTs different diameters in the transistors).

A new index is defined for the CNTFET-based SRAM design, and it is given by the triplet \((n_p, n_n, m)\), where \(n_p\) and \(n_n\) represent the first chirality vector “\(n\)” of the PCNTFETs and NCNTFETs, respectively, and \(m\) is the common second chirality vector “\(m\)” of the two CNTFETs. For example, a SRAM cell with \((16, 0)\) PCNTFETs and \((19, 0)\) NCNTFETs is represented by the index triplet \((16, 19, 0)\). The difference in chirality between N-type and P-type CNTFETs must also take into account the performance of the SRAM memory cell. As for CMOS SRAM, the threshold voltage of the pull-up P-type FETs (MP5 and MP6 shown in Figure 3.7) have a close relationship with the Static Noise Margin (SNM) of the SRAM cell (the SNM is defined as the maximum value of DC noise voltage that can be tolerated by the SRAM cell without
changing the stored bit \([64]\)). The SNM is commonly used as a metric for static stability of a SRAM cell \([22]\).

To investigate the SNM of the proposed dual-diameter CNTFET SRAM, extensive simulations have been performed on CNTFET SRAM cells with index triplets of \((10, 19, 0), (13, 19, 0), (16, 19, 0), (19, 19, 0), \) and \((22, 19, 0)\) for the transistors. Figure 3.10 and Figure 3.11 show the simulation results of the read SNM of the SRAM cell at 0.9V power supply and room temperature. For the 6T SRAM cell configuration in Figure 3.6 and Figure 3.7, the worst-case stability condition occurs when the cell is accessed for read operation, i.e. the read SNM is lower than the hold SNM. Simulation has shown that as the chirality vector of the PCNTFETs changes from \((10, 0)\) to \((22, 0)\), then the SNM of the CNTFET SRAM is increased. As shown in Figure 3.10, the read SNM of the CNTFET SRAM is larger than for the CMOS SRAM at 32nm feature size. Simulation has also been performed by changing the chirality vector of the N-type CNTFETs in the range from \((10, 0)\) to \((22, 0)\). As shown in Figure 3.11, the values of the read SNM of the CNTFET SRAM change little as the chirality vectors of the N-type CNTFETs change. Therefore, for best stability, the chirality vector of the PCNTFETs must be adjusted.

The stability of the SRAM cell can be increased by decreasing the absolute value of the threshold voltage of the pull-up transistor by controlling its chirality vector. However, there is a conflicting constraint between performance and stability. At a better ability to hold data, it is also harder to write new data into the SRAM cell, i.e. it takes more time to write new data. To find the optimum chirality for both PCNTFETs and NCNTFETs, both the SNM and the write time must be considered. Table 3.1 shows the SNM and the write time of the CNTFET SRAM cell with different
threshold voltages of the PCNTFET at 0.9V power supply and room temperature. Both the SNM and the write time increase with decrease of the absolute value of the threshold voltage of the pull-up transistor. For a highly stable and low delay design, a high SNM and a fast write time are desired. Therefore, the SNM is divided by the write time to find the best threshold voltage of the PCNTFET for both high SNM and fast write time. As shown in Table 3.1, when the threshold voltage of the PCNTFET is $|0.343\, \text{V}|$ for a (16, 19, 0) SRAM cell, the ratio between the SNM and the write time is the highest among those CNTFET SRAM cells listed in Table 3.1. Therefore, the (16, 19, 0) SRAM cell is selected for best overall performance. It is also shown in Table 3.1 that the ratio between the SNM and the write time for the CNTFET SRAM cell is significantly higher than for the CMOS SRAM cell, i.e. high stability is attained at a low write time.
Table 3.1: SNM and Write Time of the SRAM Cells at 0.9V Power Supply and Room Temperature

<table>
<thead>
<tr>
<th>SNM (mV)</th>
<th>V_{th} of NC-NTFET (mV)</th>
<th>V_{th} of PC-NTFET (mV)</th>
<th>SNM (mV)</th>
<th>Write time (ps)</th>
<th>SNM/Write Time (mV/ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10, 19, 0) CNTFET SRAM cell</td>
<td>289</td>
<td>-550</td>
<td>125</td>
<td>20.51</td>
<td>6.09</td>
</tr>
<tr>
<td>(13, 19, 0) CNTFET SRAM cell</td>
<td>289</td>
<td>-422</td>
<td>175</td>
<td>23.45</td>
<td>7.46</td>
</tr>
<tr>
<td>(16, 19, 0) CNTFET SRAM cell</td>
<td>289</td>
<td>-343</td>
<td>206.3</td>
<td>24.97</td>
<td>8.26</td>
</tr>
<tr>
<td>(19, 19, 0) CNTFET SRAM cell</td>
<td>289</td>
<td>-289</td>
<td>244</td>
<td>29.70</td>
<td>8.21</td>
</tr>
<tr>
<td>(22, 19, 0) CNTFET SRAM cell</td>
<td>289</td>
<td>-250</td>
<td>262.5</td>
<td>32.25</td>
<td>8.13</td>
</tr>
<tr>
<td>32nm CMOS SRAM cell</td>
<td>180</td>
<td>-180</td>
<td>81.3</td>
<td>24.64</td>
<td>3.29</td>
</tr>
</tbody>
</table>
3.5 A Metric for Memory Cells

To compare the dual-diameter CNTFET and CMOS SRAM cell configurations, a metric, which has been introduced in Chapter 2, is utilized in this section. This is required to comprehensively assess the performance as a function of delay, stability with respect to noise, and power dissipation within a comprehensive metric. HSPICE simulations are performed using the Stanford CNTFET model [74] and the Berkeley Predictive 32nm CMOS model [52] to compare the CNTFET and CMOS 6T SRAM cells. It has been shown in [22] that both the Static Noise Margin (SNM) and the Static Current Noise Margin (SINM) must be used to address the static stability of a SRAM cell. Therefore, SNM and SINM are multiplied together to yield a comprehensive figure of merit as the Static Power Noise Margin (SPNM). The Power Delay Product (PDP) is also an important figure of merit and often used to measure and compare the circuits. It has been shown in articles [18] [30] that the CNTFET has very high on/off current ratio compared with its CMOS counterpart. Therefore,
the standby power of the CNTFET SRAM is significantly lower than for the CMOS SRAM. However, it is also important to address write power dissipation as the power dissipated by a memory cell during the write operation is higher than the power dissipated during the read operation due to the full swing charge and discharge on the bitlines during the write operation. Therefore, the PDP of the SRAM cell proposed in this section is the product of the write power and the write delay.

The new comprehensive performance metric that is proposed in this chapter includes delay, stability, and power. It is given by dividing the SPNM by the PDP and this is referred to as the SPNM to PDP Ratio (SPR). The SPR (in units of 1/Secs) can be expressed as follows:

\[
SPR = \frac{SNM \times SINM}{Write\ Power \times Write\ Delay} \tag{3.5.1}
\]

As shown in Eq. (3.5.1), SPR provides a metric for high stability, low delay and low power in the operation of a memory cell. SPR is also versatile as it can be used to assess performance under different operational conditions, such as standby and write. Table 3.2 shows the SNM, SINM, Write Power, and Write Delay of the CMOS SRAM cell and the CNTFET SRAM cell at 0.9V power supply and room temperature. As shown in Table 3.2, the CNTFET SRAM cell is designed to have the same write delay as the CMOS SRAM cell. However, the other figures of merit may change to meet this requirement. The decrease of the write delay implies that it is easier to write data into a SRAM cell, thus making stability degrade. Also, the improvement in delay performance usually requires a larger transistor size, thus increasing power consumption. Therefore, to comprehensively assess performance as a function of delay and stability with respect to noise and power dissipation, a new
metric must be used. The proposed SPR provides such a metric for a SRAM cell in terms of delay, stability, and power. Table 3.2 confirms that the SPR of the CNTFET 6T SRAM cell is four times higher than its CMOS counterpart, hence attaining low power, high stability, and low delay within the comprehensive metric provided by the SPR under write conditions.

Table 3.2: SPR of SRAM Cells at 0.9V Power Supply and Room Temperature

<table>
<thead>
<tr>
<th>SRAM cell</th>
<th>SNM (mV)</th>
<th>SINM (μA)</th>
<th>Write Power (μW)</th>
<th>Write Delay (ps)</th>
<th>SPR (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS SRAM cell</td>
<td>117.6</td>
<td>34.33</td>
<td>29.56</td>
<td>24.64</td>
<td>4.142e+9</td>
</tr>
<tr>
<td>CNTFET SRAM cell</td>
<td>206.3</td>
<td>31.53</td>
<td>16.47</td>
<td>24.97</td>
<td>1.582e+10</td>
</tr>
</tbody>
</table>

3.6 Impact of Parameter Variations

Systematic and random variations in process, power supply voltage, and temperature (PVT) are posing a major challenge to nanoscale CMOS integrated circuits. Systematic variations in power supply voltage and temperature are shared among all devices and have become a significant concern to the parametric yield in terms of energy and delay. Figure 3.12 shows the power delay product with different supply voltages and temperatures for the CNTFET and CMOS cells. All simulation results are normalized to the cell’s power delay product at 0.9V power supply and room temperature. Due to the ballistic transport of the CNTFET, the power delay product variation of the CNTFET to voltage and temperature variations is very small. Therefore, the CNTFET is very insensitive to voltage and temperature as systematic variations.
In CMOS process, random process variations often cause geometric variations in the gate (length, width, and thickness) as well as gate oxide thickness. In short channel devices, a variation in channel length also induces change in threshold voltage due to the drain-induced barrier lowering (DIBL) [60]. These variations still exist even in CNTFET. However, due to the cylindrical geometry, a variation in the gate oxide thickness that strongly affects the drive current and capacitance of CMOS transistors has a negligible impact on the CNTFET’s operation. The gate width in CNTFET is not the effective channel width of the transistor. This only depends on the CNT diameter and the number of tubes under the gate and does not affect the drive current. As in [51] only the CNT diameter has the strongest impact on the CNTFET performance while other process variations have only a small impact. Monte Carlo simulation by HSPICE has been performed to investigate the impact of the random variations on the delay and power of the CNTFET and CMOS SRAM cells at 0.9V power supply and room temperature. Figure 3.13 shows the distribution of the write...
time of the CNTFET and CMOS 6T SRAM cells under geometric parameters with random changes. All simulation results are normalized to the SRAM’s write time under no process variation. Figure 3.13 shows that the write time of the proposed dual-diameter CNTFET 6T SRAM cell has much better tolerance to process variations compared to its CMOS counterpart. Figure 3.14 shows the distribution of the standby power consumption of the CNTFET and CMOS 6T SRAM cells. Likewise the previous cases, all simulated results are normalized to the SRAM cell standby power consumption under no process variation. Due to the significantly low standby power consumption and fewer parameters causing changes in power consumption, the CNTFET SRAM cell shows a significantly better tolerance to process variations.

![Figure 3.13: Write time distribution of CMOS and CNTFET SRAM cells](image)

3.7 Conclusion

This chapter has investigated the use of CNTFETs in 6T SRAM design. As the threshold voltage of the CNTFET can be easily controlled by changing the chirality
vector of the CNTs, a dual-diameter CNTFET SRAM cell configuration with different threshold voltages is designed, which is made possible by using different diameters for the P-type and N-type CNTs in the cell. The best chirality for the PCNTFETs was selected to achieve high stability, fast write time, and low power consumption. The proposed design shows significant improvements (compared to the design of [6]) in terms of power consumption and area.

A new comprehensive metric for SRAM cells denoted as SPR, as proposed in Chapter 2, has been applied to the CNTFET SRAM cell; SPR is a composite and versatile performance measure in terms of stability, power, and delay. The proposed dual-diameter CNTFET SRAM cell has a better SPR under write operation than its CMOS counterpart cell. Moreover, simulation has shown that the proposed dual-diameter CNTFET based SRAM design has significant lower sensitivity to process, voltage, and temperature variations.
Chapter 4

Analysis and Design of Soft Error Hardened Memory

4.1 Introduction

As nanotechnology is fast moving from explorative to industrial practice, the operation of nanoscale circuits has been extensively analyzed. From this analysis, it has been found that the extremely high density of nanoscale circuits has resulted in the deterioration of many performance metrics, such as power and delay. The leakage current has substantially increased, gain has been decreased, and the sensitivity to process variations in manufacturing is considered to be almost unavoidable as the minimum feature size is expected to reach 32nm in the next few years. Moreover, the tremendous scaling of CMOS technology necessitates reliable operation for many circuit designs. Due to the lower V_{dd} and the smaller node capacitance, the amount of charge stored on a circuit node is becoming increasingly smaller, thus making circuits more susceptible to spurious voltage variations caused by externally induced phenomena such as cosmic ray neutrons and α-particles [53]. These energy particles travel through the silicon bulk and create minority carriers that may be collected by the source/drain diffusion, thus altering their voltage value [19]. This is particularly
deleterious for storage cells such as memories and latches because data integrity is affected [37]. It is important to note that single event transient may affect multiple nodes in a circuit through charge sharing. The occurrence of this type of event may result in transient faults (TFs) as widely reported in the technical literatures. If a TF is latched by a sampling element, then this may result in a so-called soft error (SE) [20]. The soft error rate (SER) is defined as the rate at which a device (circuit or system) encounters SEs on a predictive basis. SER occurrence is expected to be significantly higher for CMOS in the deep submicron/nano ranges [65].

Soft errors are a major concern for high density VLSI circuits such as memories. Soft errors are predicted to increase as the minimum feature size of IC design is entering the very deep submicron/nano ranges. As VLSI design must be tolerant to SEs and TFs, error detecting/correcting codes have been used for homogeneous chips such as memories [21]. These schemes however incur in a significant overhead due to the required coding /encoding circuits. Few methods for tolerating soft errors in storage elements deeply embedded in VLSI chips have been proposed [13] [50]; therefore, the integrity of stored data against TFs is of the utmost importance for many applications. Recently, new techniques have been advocated. Among them, hardening has been proposed for low-cost design to tolerate SEs and TFs in memories and latches [13] [50] [44] [72] [47].

Hardened design approaches can be classified into two broad categories [47]. In the first category, hardening is achieved in the design by increasing the capacitance of some nodes, or the strength of the transistors through a novel design. Such an approach must be scaled with the feature size of the employed technology and may result in unwanted penalties with respect to performance (i.e. an increase in delay)
and power dissipation. For this category of hardening designs, capacitors in SRAM cells can be utilized to absorb the excess charge [59] [68]. A possible implementation of such an approach is shown in Figure 4.1. While error tolerance must be achieved, any performance metrics such as power delay product and stability should not be sacrificed.

![Figure 4.1: Hardened SRAM cell by using a capacitor (SRAM-C cell)](image)

In the second approach, the storage cells are designed to be insensitive to TFs, so independent of both the size of the cell’s transistors and the capacitance of the cell’s nodes. These approaches have the advantage of technology independence, but they may incur in a high design overhead due to the additional circuitry. An example of the approach in the second category has been reported in [13] and is commonly known as DICE. The DICE cell is shown in Figure 4.2 and uses twice the number of transistors of the standard storage cell (i.e. 12T vs. 6T) to achieve tolerance against TFs affecting any single node. However, its design does not require an increase in the size of the transistors or the capacitance of some nodes. In the DICE cell, the node that is affected by TFs can be driven back to its previous state by other transistors.
4.2 Soft Error Modeling for SRAM Cell

Dynamic stability of a memory cell can be addressed by performing noise analysis on the memory cell, in other words, in the present of soft errors. Soft errors occur when the collected energy Q at a particular node is greater than the critical charge, Q_{crit}, i.e. Q_{crit} is the minimum charge that needs to be deposited at the sensitive node of a storage cell to change (flip) the stored bit. In the model proposed in [27] [56], the SER (Soft Error rate) is given by:

$$SER \propto N_{\text{flux}} \times CS \times \exp\left(-\frac{Q_{\text{crit}}}{Q_s}\right)$$ \hspace{1cm} (4.2.1)

N_{flux} is the intensity of the neutron flux, CS is the area of the cross section of the node, and Q_s is the charge collection efficiency (that strongly depends on doping). Q_{crit} is proportional to the node capacitance and the supply voltage. In Eq. (4.2.1), Q_{crit} exhibits an exponential relationship with the soft error rate. Therefore, Q_{crit} has been widely used as metric for assessing soft error occurrence. The charges at some...
node due to cosmic ray neutrons or α-particle hits generate a large transient current at that node. Therefore, a critical charge generated on some node can be modeled as a current pulse for HSPICE simulation.

Figure 4.3 and Figure 4.4 shows the soft error occurrence model of 6T SRAM cell, which is used in this chapter for simulation by HSPICE. In this figure, soft errors (resulting in a signal glitch) always occur on the node nq. Figure 4.3 shows the case in which the SRAM cell storing a ‘1’ and soft errors occurring at the node nq generate a positive pulse, whereas Figure 4.4 shows the case in which the SRAM cell storing a ‘0’ and soft errors occurring at the node nq generate a negative pulse.

As reported in [56], the critical charge, Q_{crit}, is estimated only at specific nodes having a low Q_{crit} [56]. Such nodes can be experimentally or intuitively identified. It is important to note that the PMOS transistors in 6T SRAM cell are always used as load and very weak for fast write and low area. Therefore, the ability of a 6T SRAM cell to restore from a positive strike is stronger than the ability of a 6T SRAM cell to restore from a negative strike because of the strong pull down NMOS. In this chapter, the critical charge of a 6T SRAM cell is the critical charge when there is a negative glitch on node nq, which is shown in Figure 4.4.

4.3 Proposed 14T Hardened Memory Design

4.3.1 Existing Hardening Approach in First Category

As mentioned in the previous section, design approaches for hardening can be classified into two categories [56]. For the first category of hardened designs, additional capacitors are utilized to protect storage cells from TFs [68]. Figure 4.5 shows the basic cell for the hardening approach proposed in [68]. The cell consists of a regular
SRAM configuration with addition of the two CMOS transistors connected in series with two NMOS transistors and a vertically stacked capacitor. In standby mode, the capacitor C1 is connected to the SRAM cell and acts as a charge buffer, which is similar to the configuration shown in Figure 4.1. Simulation results have shown that the critical charge of the SRAM improves significantly due to the capacitor attached to the storage node. When a 3fF capacitor C1 is connected to the storage node, an increase in critical charge from 2.13fC to 3.02fC is observed at 32nm feature size typical process corner, room temperature and 0.9V power supply. During the write
or read mode, the capacitor is removed from the back to back inverter and transistors N7 and N8 discharge the capacitor. Therefore, the circuit speed is retained due to the removal of the capacitor during read and writes operations. However, this SRAM cell suffers from the read disturb problem. The Static Noise Margin (SNM) of the SRAM cell is small during the read operation, thus limiting its application at deep submicron/nano scales in which a low power supply is employed in designs. Therefore a modified hardened design for a nanoscale memory configuration is proposed in the next section to overcome these issues.

![Figure 4.5: Hardened memory configuration of [68] (TCT cell)](image)

4.3.2 Proposed 14T Hardened Memory Cell

The static stability of SRAM cell is usually measured by the SNM (the SNM is defined as the maximum value of DC noise voltage that can be tolerated by the SRAM cell
The conventional 6T SRAM cell fails to meet the operational requirements due to low read SNM in deep submicron/nano scale technology. When the conventional SRAM cell is in the read operation, the pass gate is turned on and pulls the node that stores the logic ‘0’ (for example, the node identified by nq in Figure 4.3) to a non-zero value. This decreases the read SNM, especially when a low power supply voltage is utilized. The hardened memory cell shown in Figure 4.5 suffers from the so-called read-disturb problem and is rather unstable during read operation. This memory cell achieves high performance and dynamic stability by connecting the capacitor C1 to the storage node during the standby mode and disconnecting the capacitor from the circuit during the operational mode. However, it shows a very low SNM during read operation like the conventional 6T SRAM cell. Therefore, the data stored in the memory cell is very vulnerable to external noise during the read operation.

The proposed hardened memory cell (14T) is shown in Figure 4.6. In this configuration, transistors N9 and N10 are added to the memory cell as access transistors to separate the read and write operations. During read operation, RWL is high, the data stored on nodes qc and nqc (the data on node qc and nqc are the same as the data stored on node q and nq) are read to the bitlines such that the read operation is fast. Meanwhile, when RWL is high and WWLB is high, the stack effect alleviates the read disturb problem on node q or nq, thus a large read SNM is achieved in this memory cell. The proposed hardened memory retains a high dynamic stability in terms of critical charge (3.13fC at room temperature and 0.9V power supply), it also achieves high static stability in terms of SNM, i.e. 250mV at room temperature and 0.9V power supply, compared to a SNM of 88.3mV for the hardened cell of Figure 4.5.
For a high density memory design, the SRAM cell should be sized as small as possible. On the other hand, a sizing constraint should be applied to the conventional 6T SRAM cell, for correct operation, and the pull-down to pass gate transistor ratio must be greater than 1.2 to avoid the read-disturb problem [16]. However, for the proposed memory cell of Figure 4.6, the size of the pull-down transistors (N3 and N4 in Figure 4.6) can be scaled down as the read and write operations have been separated. Scaling down the pull-down transistors not only improves performance (fast write), but it also reduces the overhead due to the additional transistors of the proposed hardened cell. In this chapter, the pull-down transistor is reduced to either three-quarter of its original size (yielding so-called TQP cell) or half of its original size (yielding so-called HP cell). The effect of sizing of the transistors on the performance of the memory cell can then be assessed. Figure 4.7 shows the SNM of the conventional 6T SRAM cell, the hardened memory cell in Figure 4.5 (denoted as the TCT cell as in [68]), the proposed hardened memory cell without pull-down transistor scaling (NSP cell), the TQP hardened cell, and the HP hardened cell. It is shown in Figure 4.7 that the hardened cell of Figure 4.6 achieves a significantly larger SNM compared to the 6T cell and the hardened cell [68] of Figure 4.5 due to the stack effect. It is also shown in Figure 4.7 that scaling down the pull-down transistor shows little effect on the SNM of the 14T memory cell. This is a positive feature that will be used in the next section to reduce the area overhead in layout of the memory cell.

4.3.3 Transistor Sizing Optimization

HSPICE simulation has been performed on the conventional 6T SRAM cell, the hardened cell of Figure 4.5 (denoted as the TCT cell as in [68]), the proposed hardened cell
of Figure 4.6 without scaling (NSP cell), the TQP hardened cell, and the HP hardened cell to investigate their performance using the Berkeley Predictive Technology Model (PTM) at 32nm [52].

For the SRAM-C cell shown in Figure 4.1, the transistor widths WP5/WN1/WN3 are 80/120/160nm. For the TCT cell, the transistor dimensions of the access transistors and cross-coupled inverter are the same as the 6T SRAM cell, and minimum transistor widths (40nm) are used for all other transistors. The transistors of the NSP cell are the same as in the TCT cell with two additional read access transistors of 120nm width. The transistor widths of N3 and N4 in the TQP cell are 120nm while 60nm is used for the TCT cell and the NSP cell. Similarly, the transistor widths of N3 and N4 in the HP cell are 80nm.

The simulation results on the write/access time and the leakage power of these
SRAM cells are plotted in Figure 4.8 and Figure 4.9. Due to the additional transistors, writing speed of the TCT and the NSP cells is slower than for the 6T SRAM cell. However, as the write and read operations are separated in the NSP cell, the pull-down transistors are scaled down for fast write operation. The simulation results in Figure 4.8 show that the TQP and HP cells achieve 2% and 13% writing time improvements. It is also shown in Figure 4.8 that all five cells have almost the same access time due to the similar read scheme. The leakage powers of the 6T cell, the TCT cell, the NSP cell, the TQP cell, and the HP cell are plotted in Figure 4.9. Due to the two additional read access transistors (N9 and N10), the leakage power of the proposed hardened cell of Figure 4.6 (NSP cell) is 46% higher than the 6T cell. However with pull-down transistor scaling, the leakage power of the TQP and HP cells is reduced significantly. The leakage power of the HP cell is 19% higher than the 6T SRAM cell and 5% higher than the TCT cell. Simulation results show that the HP cell improves performance and power consumption of the proposed hardened
cell compared to the NSP cell. Therefore, the HP cell has the best transistor sizing for the proposed memory cell of Figure 4.6.

![Write time and access time of SRAM cells](image)

Figure 4.8: Write time and access time of SRAM cells

Critical charge is often used as a metric for hardened memory designs [68]. In the TCT cell, the NSP cell and the HP cell, the critical node (i.e. the node with the smallest critical charge) is the same as the unhardened 6T cell, i.e. node q or nq in Figure 4.5 and Figure 4.6. Table 4.1 summarizes the critical charge, SNM, and the write delay of the 6T memory cell, the SRAM-C cell in Figure 4.1, the TCT cell in Figure 4.5, the NSP cell and the HP cell in Figure 4.6. Compared to the unhardened 6T memory cell, the SRAM-C cell achieves the best critical charge, but it suffers from a low SNM and a very slow write delay. The TCT cell achieves a high critical charge and a fast write, but it shows a low SNM, which makes this cell very unstable at a low power supply. The proposed NSP and the HP cells have a high critical charge, a high SNM, and a fast write time (as shown in Table 4.1), thus making them good candidates for high-stable and low power memory designs. In Table 4.1 shows
the SNM of the HP cell is still relatively higher than the 6T and TCT cells and the cell has a high critical charge and a faster write delay. Table 4.1 also confirms that the transistor sizing of the HP cell is best for the proposed hardened memory cell of Figure 4.6.

Table 4.1: Critical charge, SNM, and Performance comparison of Different Memory cells at 0.9V Power Supply and Room Temperature

<table>
<thead>
<tr>
<th>Memory Cell Type</th>
<th>Critical Charge</th>
<th>SNM</th>
<th>Write Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unhardened 6T memory cell</td>
<td>2.13 fC</td>
<td>88.3 mV</td>
<td>14.66 ps</td>
</tr>
<tr>
<td>SRAM-C cell (C=3ff)</td>
<td>3.74 fC</td>
<td>88.3 mV</td>
<td>44.12 ps</td>
</tr>
<tr>
<td>NSP cell (C=3ff)</td>
<td>3.16 fC</td>
<td>250 mV</td>
<td>15.69 ps</td>
</tr>
<tr>
<td>HP cell (C=3ff)</td>
<td>3.02 fC</td>
<td>212.5 mV</td>
<td>12.81 ps</td>
</tr>
</tbody>
</table>

The layouts of the TCT and the HP cells (based on MOSIS deep sub-micrometer design rules [66]) are shown in Figure 4.10 and Figure 4.11. The area of the TCT cell is as twice as the traditional 6T SRAM cell because of the additional six transistors. Two more transistors are added to the TCT cell [68]. The pull-down transistors’ sizes
are, however, reduced yielding so-called HP cell. The layout of the HP cell is shown in Figure 4.11, and the area of the HP cell is only 7% larger than the TCT cell shown in Figure 4.10.

As shown in Figure 4.10 and Figure 4.11, the additional capacitor can be implemented as a metal insulator metal (MIM) capacitor [70] on top of the SRAM cell as MIM capacitors are designed and realized at interconnect levels. A substantial area penalty will be incurred if its implementation is through a poly-diffusion capacitor. The capacitance density of the MIM capacitor is determined by the insulator material.
and thickness between two metal layers in the layout.

4.3.4 Impact of Variations on 14T Hardened Cell

For the proposed hardened memory cell in Figure 4.6, the capacitor C1 is disconnected from the cross-coupled inverter during the write operation. An increase in the capacitance of C1 has a negligible effect on performance. However, an increase in the capacitance of C1 can have a significant effect on the critical charge. When the capacitance of C1 is 2fF, the critical charge is 2.66fC while the critical charge is 2.13fC for the 6T SRAM cell.

Figure 4.12 shows that the critical charge of the HP cell increases almost linearly as the capacitance of C1 increases. Simulation has also confirmed that there is no performance degradation when the capacitance of C1 increases. Therefore, the capacitance of C1 can be increased for high critical charge (hence better tolerance to soft errors) depending on the area that is allowed for implementing the capacitor.

![Figure 4.12: Capacitance vs critical charge plot of HP cell](image)

Systematic and random variations in process and temperature are posing a major
challenge for nanoscale CMOS integrated circuit design. Systematic variations (such as temperature variations) have strong impact on the critical charge of the 6T SRAM cell because both junction capacitance and electron mobility have large temperature coefficients. Figure 4.13 shows that the critical charge of the 6T cell decreases when the temperature increases. For the proposed cell configuration, this is dependent on the implementation of the capacitor.

In CMOS technology, bottom and top plate capacitors are usually implemented by two metal layers or ploy to ploy because they have a lower temperature coefficient. Figure 4.13 plots the critical charges of the SRAM-C cell of Figure 4.1 and the proposed hardened cell of Figure 4.6 with capacitors of 3fF and 5fF. As shown in Figure 4.13, the critical charge of the SRAM-C cell also decreases as the temperature increases, albeit at a slower rate compared to the 6T SRAM cell. For the proposed HP cell, the change in the critical charge due to temperature variation is significantly smaller. During standby mode, the HP cell operates as a SRAM-C cell, i.e. transistors N5, N6, P1, and P2 are on. Compared to the SRAM-C cell, when the temperature is low, the currents through transistors N5, N6, P1, and P2 in Figure 4.6 are low in short channel devices. Therefore, the connection between nodes qc and q, and nqc and nq are weak, and the ability of absorbing an additional charge is weak. This makes the critical charge of the HP cell at low temperature smaller than for the SRAM-C cell. As temperature increases, the currents through transistors N5, N6, P1, and P2 increase, and the ability of absorbing an additional charge becomes stronger. Therefore, the critical charge of the HP cell is almost the same as the SRAM-C cell.

Random process variations are a serious concern due to uncertainty in the device and interconnect characteristics. Process variations negatively impact both static
Figure 4.13: Temperature vs critical charge plot of SRAM cells

and dynamic stability of traditional SRAM designs. Table 4.2 shows the HSPICE simulation results on the dynamic and static stability of the 6T and HP memory cells in terms of the critical charge and SNM. The unhardened 6T SRAM cell is very unstable in terms of SNM and it has a low critical charge at the slow process corner. The TCT cell of [68] has the highest critical charge, but a very low SNM. By using the proposed high-stable design, the memory cell retains a relatively high SNM and critical charge even at a slow corner. Therefore, the proposed HP cell is less sensitive in the nanoscale regimes to process variations.

Table 4.2: Process Variation Impact on SRAM Cell Stability

<table>
<thead>
<tr>
<th>Memory Cell Type</th>
<th>Critical Charge (fC)</th>
<th>SNM (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Corner</td>
<td>Typical</td>
<td>Fast</td>
</tr>
<tr>
<td>6T memory cell</td>
<td>2.13</td>
<td>2.82</td>
</tr>
<tr>
<td>TCT cell (C=3ff)</td>
<td>3.16</td>
<td>3.82</td>
</tr>
<tr>
<td>HP cell (C=3ff)</td>
<td>3.02</td>
<td>3.58</td>
</tr>
</tbody>
</table>
4.4 Existing Hardened Memory Design in Second Category

4.4.1 DICE Cell

As mentioned in the previous section, an example of the approach in the second category has been reported in [13] and is commonly known as DICE. As shown in Figure 4.2, the DICE cell uses twice the number of transistors of a standard storage cell. The DICE cell has two states, the ‘0’ state (X1=0, X2=1, X3=0, X4=1) and the ‘1’ state (X1=1, X2=0, X3=1, X4=0). In any of these two states upon the occurrence of a soft error (on a single node), the state of the node is always driven back to its original value. For example, in the ‘0’ state, if the node struck by a particle is X2, the state of X2 goes from ‘1’ to ‘0’. However, this strike will not propagate along the feedback loop due to the interlocked configuration. Meanwhile, the state ‘0’ stored in X1 can restore the state of X2.

4.4.2 Hardened Cell Proposed in [47]

Besides DICE cell, Figure 4.14 shows the basic cell for the hardening approach proposed in [47]. This also belongs to the second category of hardened designs described previously. Three basic principles are applicable to the design of this cell: 1) the feedback loop of the cell is blocked to keep the transient pulse from propagating along the loop, 2) the gates of the NMOS and PMOS transistors of the inverters are separated to harden those nodes left unprotected by the first principle, and 3) the regeneration principle should be introduced to avoid the loss of stored information.

A traditional memory cell configuration uses two back to back inverters, producing a positive feedback loop to make a bistable circuit. For the radiation hardened
Figure 4.14: Hardening approach proposed in [47]

design in Figure 4.14, the feedback loop is blocked to prevent the transient pulse from propagating along the loop. As shown in Figure 4.14, transistors T_{pr} and T_{nr} are used to block the transient pulse affecting node B or node Q. Therefore, the transient pulse cannot be propagated to nodes a1 and a2, which are the gates of transistors T_{p1} and T_{n1}. Furthermore, the gates of transistors T_{p1} and T_{n1} are separated to harden nodes a1 and a2. As ionizing particles striking the NMOS transistor produce only negative current pulses and ionizing particles striking a PMOS transistor produce only positive current pulses, a particle striking node a2 can turn transistor T_{n1} off, but it can never turn it on. Similarly, a particle striking node a1 can turn transistor T_{p1} off, but it can
never turn it on. Turning T_{p1} or T_{n1} off can only bring the output of the first inverter to the high impedance state, thus leaving unaffected the previous state at node B. Therefore, TFs on nodes $a1$ and $a2$ are also blocked. The gate control voltages V_p and V_n are applied to the transistors T_{pr} and T_{nr} to restore the values by the leakage current on nodes $a1$ and $a2$ as proposed in [47].

It is shown in [60] that there is an exponential relationship between the gate voltage and the leakage current. Therefore, to increase the leakage current of T_{pr} and T_{nr}, the voltages $V_p = V_{dd} - d$ and $V_n = d$ (where d is equal to a few tenth of V_{dd}) are applied to the gates of T_{pr} and T_{nr}, respectively [47]. However, the leakage current also decreases significantly as the drain source voltage decreases. Assume the voltage at $a1$ and $a2$ is V_{dd} and a negative strike occurs on node $a2$. Simulation by HSPICE shows that for 0.9V power supply the node $a2$ can be promptly restored to 0.2V due to the large voltage difference between source and drain. However, the voltage at node $a2$ increases slowly after the voltage reaches 0.2V due to the reduced drain source voltage difference. Therefore, the voltage at node $a2$ can be only driven to approximately 0.25V instead of 0.9V. Similarly, the voltage for ‘0’ data at node $a1$ can be only driven back to approximately 0.65V (high state) if a positive strike occurs on node $a1$ and (storing a logic ‘0’). Therefore, the DC voltages at V_p and V_n are unable to restore the node voltage after the nodes are struck by a transient pulse. To fully restore the voltages at nodes $a1$ and $a2$, the periodic signals $V_p = R_{n}$ and $V_n = R_n$ have been also utilized as proposed in [47]. The periodic signal R_n is ‘0’ for most of the time and it takes the value of ‘1’ for a short time to restore the value of node $a2$. The signal R_{n} is used in a similar fashion.

As shown in Figure 4.15, a hardened memory cell has also been proposed in [47]
by implementing the hardened memory cell structure of Figure 4.14. However, this memory cell suffers from two problems. The first problem is that nodes a1 and a2 could easily lose their state due to the leakage current from wordline WBL since the feedback loop from node d to a1 and a2 is cut off by the two pass transistors, T_{pd} and T_{nd}. Then, the high leakage current from a2 to WBL or from WBL to a2 can possibly change the state of the memory cell.

![Hardened memory cell proposed in [47]](image)

Figure 4.15: Hardened memory cell proposed in [47]

In the memory cell of Figure 4.15, after writing a ‘0’ into the memory cell, the voltage at node a2 is 0V. If WBL goes back to ‘1’ and the access transistors are off, a high leakage current is present on the access transistors T_{pa} and T_{na}, and the voltage on node a2 increases. At this time, a positive strike may happen at node a1 to drive the output of T_{p1} to a high impedance state. A voltage rise on node a2 will change the data stored in the memory cell.
The second problem of this memory cell is the signal distribution network of \(V_p\) and \(V_n\) since \(V_p = V_{dd} - d\) and \(V_n = d\) (where \(d\) can be equal to a few tenth of \(V_{dd}\) or the periodic signals \(V_p = R_n\) and \(V_n = R_n\), must be applied to every single memory cell as mentioned before. The signal generation and distribution are very costly, and they result in an additional load to the overall memory, thus degrading its performance.

For hardening design, the scheme shown in Figure 4.14 can be still utilized even for a different memory cell configuration to overcome the problems described previously. This is described in more detail in the next section.

4.5 Proposed 11T Hardened Memory Design

A new hardened memory cell is proposed in this chapter to overcome the problems described previously. Its design is shown in Figure 4.16 and solves the problems described in the previous section for the design of [47].

The proposed hardened cell is derived and improved from the fast hardened latch in [47] by removing the switches in the feedback loop. As mentioned in the previous section, the hardened memory proposed in [47] has two problems which affect the correct operation of the cell. The feedback configuration in the fast hardened latch in [47] is found to be better suitable for hardened memory cell than the feedback in the hardened memory in [47]. The basic storage element used in the proposed hardened memory cell relies on the hardening scheme [47] of Figure 4.14. In the hardened memory cell of Figure 4.16, the feedback loop in the memory cell is cut off by the transistors M5, M6, M7, and M8, i.e. a transient pulse cannot be propagated along this loop back to its starting point. At the unprotected nodes a1 and a2, the gates
of the PMOS and NMOS transistors are separated from the hardened nodes a1 and a2. Signal regeneration at a1 and a2 is controlled by the transistor M5 and M8, and will be described in more detail below.

In the proposed hardened cell, the access pass gates (M1 and M2) are connected to node d instead of nodes a1 and a2 to prevent the high leakage current from BL to change the data stored in the memory cell. For the memory cell in Figure 4.15, the leakage current from WBL can easily change the data. In the proposed memory cell of Figure 4.16, however, the access transistors are connected to node d, thus not allowing nodes a1 and a2 to be affected by the leakage current on BL. In this case, a TF on a1 or a2 will not change the data stored in the memory cell. A NMOS write control transistor is added to the proposed memory cell for the write operation. As discussed in [71], a single ended SRAM cell operates correctly when writing '0' as data, but it may encounter problems when writing a '1'. Therefore, a write control
transistor is added between M11 and ground and the WCT signal is generated by
the write select signal [71]. When the column is selected, the WCT signal is low and
the pull down transistor does not affect the write operation. As for the unselected
columns, the WCT signal is high to maintain the latch function. With the new write
control transistor, the proposed hardened memory cell consists of eleven transistors,
which is one transistor less than the DICE configuration.

The refresh signals rf and rfb are connected to the gates of M8 and M5 to regen-
erate the states at nodes a1 and a2. As described in Section 4.4.2, the voltages
\(V_p = V_{dd} - d \) and \(V_n = d \) on transistors \(T_{pd} \) and \(T_{nd} \) of Figure 4.15 are unable to restore the
voltages at nodes a1 and a2, and this also causes a high standby power consumption
for the memory cell. Therefore, the periodic refresh signals \(V_p = R_n \) and \(V_n = R_n \)
must be used to regenerate the states on nodes a1 and a2. As the read wordline is
always connected to the memory cell, then these two signals can be used to control
the pass gate transistors to block the feedback loop. As shown in Figure 4.17, when
WL is high and WLB is low, the transistors M7 and M6 are on, and the cell acts
as a normal memory element. When WL is low and WLB is high, the transistors
M7 and M6 are off, and the feedback loop is cut off. The refresh signals, rf and rfb,
are generated by the read select signal. When a column is selected for read, the rf
and rfb signals are generated at each column by a complementary pulse generator to
refresh the data at the nodes a1 and a2 and ensure that the correct signal is read by
the bitline. The memory design proposed in this chapter successfully addresses both
problems described previously for the cell of [47].

As the access transistors M1 and M2 are used for both (read and write) operations,
the refresh transistors M5 and M8 and the refresh signals rf and rfb ensure a correct
read operation. As shown in Figure 4.17, when the memory stores ‘0’ as data, a2 is ‘1’. Consider the scenario in which a TF occurs on node a2 prior to the read operation thus driving node a2 to a ‘0’ state. As discussed in Section 4.4.2, the state of node a2 needs to be restored. Otherwise during the read operation, M6 and M7 are on. The ‘0’ state on node a2 will change the data on nodes db and a1 to the ‘0’ state, resulting in data change on node d to a ‘1’ (its correct value is ‘0’). If there is no refresh prior to the read operation, an error occurs during the read operation if a TF strikes on node a2. Therefore, the refresh signals rf and rfb generated by the read select signal are connected to M8 and M5 to refresh the memory cell before the read operation. The refresh operation is performed by a pulse generator circuit locally sited at every column to provide the refresh signal; once the column is accessed for a read operation, the refresh signal is generated to refresh the memory cells. Simulation results using HSPICE show that adding the refresh transistors and the refresh circuit to the proposed hardened cell will only increase the average power consumption by 0.8% per single cell during the read access operation. The power dissipation of this pulse generator circuit (consisting of a dozen transistors) is very small and therefore negligible compared to the entire memory array. It is important to note that the read column select signal for generating rf and rfb must arrive earlier than the read wordline. This condition is always valid in the proposed design.

4.6 Evaluation of the Proposed 11T Hardened Cell

In this section, different figures of merit as related to critical charge, power dissipation and delay are assessed to compare the proposed memory cell with other schemes found in the technical literature.
4.6.1 Critical Charge

A normal (unhardened) back to back inverter memory at 32nm feature size has been simulated at 0.9V power supply and room temperature. Under these conditions, the critical charge Q_{crit} of a normal (6T) memory cell is 2.13fC. Simulations have been performed on the proposed hardened memory cell using same sized transistors. A 10fC charge (i.e. a value more than four times the Q_{crit} for a normal 6T memory) is applied to nodes d, db, a1 and a2 (note that only a positive strike on node a1 and only a negative strike on node a2 can occur) as shown in Figure 4.17. Since the feedback
loop is blocked, a TF on node d or db will not propagate to its starting point, so the stored data will be unaffected. If there is a strike on node a1 or a2, the output of the first inverter will be at the high impedance state and the data on nodes d and db will not be changed. When the periodic refresh signal arrives, the voltage on node a1 or a2 is then restored to its previous state. Simulation results show that the data stored in the proposed hardened memory cell does not change even when a transient pulse with a charge higher than 10fC is applied to the nodes. Same as the DICE cell, the proposed design presents complete immunity for any transient on a single node regardless of the strength of the transient fault. Therefore, this design is hardened and excellent tolerance to soft errors is accomplished.

4.6.2 Area, Power and Delay

The proposed hardened memory has eleven transistors compared to a conventional memory that has only six transistors (6T). The additional transistors consume more power depending on the choice of technology. In the proposed hardened memory cell, the write operation can be slowed down due the transistors for blocking the feedback loop. In the proposed memory cell design of Figure 4.16, the size of the access transistors is therefore increased to improve performance. Figure 4.18 shows the write delay of the proposed 11-transistor hardened memory cell, the DICE cell (12T), and the 6T conventional memory cell. The width of the access transistors M1 and M2 in Figure 4.16 is twice the width of the access transistors of the DICE cell and a 6T conventional memory cell. As shown in Figure 4.18, both the write ‘0’ and the write ‘1’ delays of the proposed 11T hardened memory cell are the fastest. However, this results in an increase of power consumption. Therefore, the power-delay product of the hardened memory cells (as an important metric for digital CMOS circuits)
must be also investigated for the different memory cells. Table 4.3 shows the number of transistors, the total transistor width, and the area of the conventional 6-transistor (6T) memory cell, the proposed 11T hardened memory cell, and the 12-transistor hardened DICE memory cell at 32nm CMOS technology (using the predictive model data of [52] and MOSIS deep sub-micrometer rules [66]). Layouts of the DICE cell and the proposed 11T cell are shown in Figure 4.19 and Figure 4.20. For fair comparison, the total width of the 11 transistors of the proposed cell is set to be the same as the DICE configuration (with 12 transistors). As shown in Table 4.3, the area of the 11T cell is slightly smaller than the DICE cell; the hardened memory cell of [47] is also included in this comparison. For the entire memory array, a pulse generator circuit is needed for each column; the complexity of this circuit is very small (nearly a dozen transistors) compared to the memory array. Two routing paths (in parallel with the bitline) are needed for the rf and rfb signals of Figure 4.17. However, as there are ample of routing resources in parallel with the bitline, the two additional rf and rfb signals will not significantly increase the area of the overall memory array.

<table>
<thead>
<tr>
<th>Memory Cell</th>
<th>Number of transistors</th>
<th>Total transistor width</th>
<th>Cell area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unhardened 6T memory cell</td>
<td>6</td>
<td>720nm</td>
<td>0.2134μm²</td>
</tr>
<tr>
<td>Proposed hardened memory cell</td>
<td>11</td>
<td>1440nm</td>
<td>0.3764μm²</td>
</tr>
<tr>
<td>DICE memory cell</td>
<td>12</td>
<td>1440nm</td>
<td>0.3864μm²</td>
</tr>
<tr>
<td>Hardened memory in [8]</td>
<td>10</td>
<td>1160nm</td>
<td>0.3520μm²</td>
</tr>
</tbody>
</table>
HSPICE simulation has been performed at a 0.9V power supply and room temperature using the Berkeley Predictive Technology Model at 32nm [52]. Figure 4.21 shows the simulation results for the standby power and the write delay product of the two hardened memory cells and the conventional 6T memory cell at different process corners. For the proposed 11-transistor hardened memory cell, the worst case standby power is measured, i.e. when BL is high and the memory cell stores a ‘0’. For the write delay, the average delay of the write ‘1’ and ‘0’ operations is used for the power delay product (PDP). The power delay product of the proposed 11-transistor hardened memory cell is 38% higher than the power delay product of the 6T (unhardened) memory cell due to the additional transistors. The DICE cell has 218% increases in the power delay product with respect to the 6T memory cell due to the large leakage current from the four access transistors. Therefore, by combining the delay improvement and power overhead, the proposed 11-transistor hardened memory cell has a 55% reduction in power delay product compared with the DICE cell.
HSPICE simulation results (plotted in Figure 4.21) confirm the reduction in power delay product at different process corners.

4.6.3 Impact of Process Variation

Using Monte Carlo and HSPICE, the soft-error tolerance of the proposed hardened memory cell is evaluated in the presence of process variations in the channel length and the threshold voltage of the transistors.

In the Monte Carlo simulation, transient faults on internal nodes of the memory cell follow a uniform distribution in the Monte Carlo simulation. In the presence
of random variation, the data stored in the memory cell will not change unless the memory cell is ready to write (this is a problem common to all memory cells.). Monte Carlo simulation results have nevertheless confirmed the excellent soft error hardening capabilities of the proposed memory cell in the presence of process variations in its design.

4.7 Multiple Node Upset Analysis on Hardened Memory Cells

As device size shrinks, spacing between nodes decreases significantly and the charge generated from a single event strike may diffuse to affect adjacent nodes. As circuits are scaled down in size, the multiple node upset scenario is likely to require new designs for hardening storage cells. Therefore, differently from a previous paper [10] in which the multiple-bit upset tolerance is considered, the objective of this section is to investigate the multiple node upset tolerance of existing hardened (single-bit)
memories and propose new hardened design with better multiple node upset tolerance.

4.7.1 Multiple Node Upset Modeling

As described in Section 4.2, the soft error on the critical node is modeled as a current source injected to that node. For multiple node injection, multiple current sources are applied to the circuit nodes. A multiple node upset occurs when more than one node are affected in the storage element and additional charge is collected by those nodes. It is also important to note that only the two-node upset scenario is modeled in this section. A multiple upset scenario with more than two nodes is unlikely to cause a significant state change due to the extensive charge diffusion occurring in the storage element and wider spread of the incident strike [10]. Therefore, the node that collects the primary portion of the charge is referred to as the primary node, while the node that collects the remaining portion of the charge is referred to as the secondary node. To simulate the charge collection on two adjacent nodes, the charge is deposited simultaneously on node pairs using multiple current sources [67]; this simulation-based approach has been verified to yield the same correct results as a 3D device modeling approach [67].

Therefore, to investigate the tolerance to the multiple node upset scenario outlined previously, two independent current sources are applied to the cell nodes to find the worst case combination for a memory cell. In this section, this is referred to as the critical pair; the critical pair defines two types of information: (a) the nodes that are affected by the soft error and its transient fault; (b) the original and final states of the nodes. In theory for a memory cell with N nodes, there are at most 2N(N-1) combinations; in practice the number of combinations is much less as dependent on the cell functionality and circuit structure. For example, a conventional 6T cell has
two internal nodes that may be affected by a particle strike, hence there are four combinations. For the DICE cell, there are 24 combinations, but only transient faults on adjacent nodes will cause a multiple node upset (due to its feedback feature). So, the number of combinations for the DICE cell is reduced to 16. For the 11T memory cell of in Figure 4.16, particles striking the NMOS transistor produce only negative current pulses and particles striking a PMOS transistor produce only positive current pulses. So, a particle striking node a2 can turn transistor M11 off, but it can never turn it on, i.e. node a2 can only go from state 1 to 0, but never from 0 to 1. Similarly, a particle striking node a1 can turn transistor M10 off, but it can never turn it on. Therefore, the number of combinations of the 11T cell is 12.

The process for finding the critical pair of a hardened storage element can start from the critical node (as the node with the lowest critical charge). This node is therefore identified as the primary node. All combinations related to the primary node are then simulated and the critical pair is found. However, for the 11T and the DICE memory cells, they are fully immune to a single node upset. In this case, simulation of all possible combinations must be performed to find the critical pair. The exhaustive pair-wise node simulation of these memory cells has been performed and the results show that the critical pair for the DICE cell is “X1 1->0 (i.e. the state of node X1 changes from ‘1’ to ‘0’), X4 0->1”, and the primary node for this pair is node X1. Similarly, the critical pair for the 11T memory cell is “a2 1->0, d 0->1”. Simulation results show that the 11T memory is more vulnerable to multiple node upsets compared with DICE. To improve its tolerance to multiple node upsets, two transistors are added to the 11T memory cell, yielding a 13T memory design, which will be described in more detail in the next section.
4.8 Proposed 13T Hardened Memory Design

A new hardened memory cell is proposed in this section to improve the multiple node upset tolerance. Its design is shown in Figure 4.22. In the 11T memory cell, the critical pair of the cell is “a2 1->0, d 0->1”, i.e. when node a2 stores a state ‘1’ and a charge is collected on the primary node a2, a transient fault causes the node to change from state ‘1’ to state ‘0’. At the same time under this scenario, charge is also collected by the secondary node d; this causes the node to change from state ‘1’ to state ‘0’. At the same time under this scenario, charge is also collected by the secondary node d; this causes the node to change from state ‘1’ to state ‘0’. Simulation results show that in order to improve the tolerance to multiple node upsets, it is important to improve the critical charge on the secondary node.

![Figure 4.22: Proposed 13T hardened memory cell](image)

It is well known in electronic circuit design that a Schmitt trigger affects the switching threshold of an inverter depending on the direction of the input transition. The Schmitt trigger configuration introduced in [54] is achieved with a feedback
mechanism to increase the switching threshold of the input inverter [54]. Since the transition on node d is from ‘1’ to ‘0’, in the proposed design the feedback mechanism is used only in the pull-down path to improve the critical charge on the secondary node, i.e. node d.

As shown in Figure 4.22, two additional transistors are added to the 11T memory cell, yielding a 13T design. The operation of the 13T memory cell is similar to the 11T memory cell. The refresh signals rf and rfb are connected to the gates of M8 and M5 to regenerate the states at nodes a1 and a2. The periodic refresh signals $V_p = R_n$ and $V_n = R_n$ are used to regenerate the states on nodes a1 and a2. As the read wordline is always connected to the memory cell, then these two signals can be used to control the pass gate transistors to block the feedback loop.

Figure 4.23 shows the timing diagram of the proposed 13T memory cell. The read and write mechanism of the 13T memory cell is similar to the 11T memory cell. When WL is high, the transistors M7 and M6 are on, and the cell acts as a normal memory element. When WL is low, the transistors M7 and M6 are off, and the feedback loop is cut off. The refresh signals, rf and rfb, are generated by the read select signal. When a column is selected for read, the rf and rfb signals are generated by a complementary pulse generator to refresh the data at the nodes a1 and a2 and ensure that the correct signal is read by the bitline BL.

4.9 Evaluation of the 13T Memory Cell

In this section, different figures of merit as related to critical charge, power dissipation and delay are assessed to compare the proposed memory cell with other schemes found in the technical literature.
4.9.1 Multiple Node Upset Tolerance

The multiple node upset tolerance of the hardened cells is first investigated in this section. The methodology described in Section 4.7.1 is applied to all three hardened memory cells. After finding the critical pair of each memory cell, the curve of the primary node charge versus the secondary node charge is plotted in Figure 4.24. Compared to the 11T cell, the 13T cell has one more node due to the two additional transistors. As described in Section 4.7.1, the number of combinations for the 13T cell
is 20. Simulation shows that the same condition as for the 11T cell is also applicable to
the 13T cell, i.e. the critical pair of the 13T cell is still “a2 1->0, d 0->1”. Figure 4.24
shows the simulation results for the single event scenario with multiple node upsets.
This plot is generated using HSPICE simulation to provide a criterion to quantify the
tolerance to multiple node upsets, i.e. the area under the curve corresponds to the
tolerance. Any combination of charge in the node pair that falls above (below) the
curve will (not) result in an upset [67]. Therefore, a large area under the curve means
a better tolerance to multiple node upsets. It is also can be observed in Figure 4.24
that the curves do not intersect the X and Y axes, thus implying that DICE, 11T,
and 13T cells are tolerant to any single node upset (i.e. when the charge deposited
on one node is 0).

As shown in Figure 4.24, using the Schmitt trigger configuration, the tolerance of
multiple node upsets of the 13T cell is improved significantly compared with the 11T
memory cell. The area under the curve is significantly increased compared with the
11T cell, making it comparable to the area of the DICE cell. In the 11T and 13T
memory cells, the feedback loop is cut off when the cell is holding data, therefore,
when the charge on the primary node is large enough to change the state of the
primary node, the tolerance to a single event causing multiple node upsets of the
memory cell is mostly determined by the critical charge on the secondary node. As
shown in Figure 4.24, the Schmitt trigger configuration is employed in the 13T cell
to efficiently increase the critical charge on the secondary node. Figure 4.24 shows
that the proposed 13T cell has better tolerance to a single event when charge sharing
is very diffused or limited in a node pair (i.e. DICE will have better tolerance when
charge sharing is nearly uniform), i.e. limited (diffused) charge sharing corresponds
to high (low) charge at primary node and low (high) charge at secondary node. It has been shown [3] that in practical designs and layouts, these are the likely cases of occurrence at nanometric scale sizes.

Figure 4.24: Critical charge plot on the critical pair for DICE cell, 11T hardened cell and 13T hardened cell

4.9.2 Area, Power and Delay

The proposed hardened memory has thirteen transistors (13T) compared to the memory cell of [41] with eleven transistors and the DICE cell with twelve transistors. Additional transistors consume more power depending on technology. In the proposed hardened memory cell, the write operation can be slowed down due to the transistors required for blocking the feedback loop. In the 11T and 13T memory cells, the size of the access transistors is therefore, increased to improve performance.

The areas of the 11T hardened memory cell, the 12-transistor hardened DICE memory cell, and the 13T hardened memory cell are compared at 32nm CMOS technology (using the predictive model data of [52] and MOSIS deep sub-micrometer rules [66]). For fair comparison, the total width of the 11 transistors of the proposed cell
is the same as the DICE configuration (with 12 transistors). So, the width of the access transistors M1 and M2 in Figure 4.22 is twice the width of the access transistors of the DICE cell. Figure 4.25 shows the write delay, the access delay, the power consumption, and the area of the 11T memory cell, the DICE cell (12T), and the proposed 13T memory cell. The write delay shown in Figure 4.25 is the average of the write ‘0’ delay and the write ‘1’ delay. The access delay shown in Figure 4.25 is the average of the read ‘0’ delay and the read ‘1’ delay. All four figures of merit have been normalized to the ones for the conventional (unhardened) 6T memory cell. Due to the large access transistors, the delay performance of the 11T and 13T memory cell is improved, at a higher power consumption, and larger area. In Figure 4.25, the proposed 13T cell is 33% faster than the DICE cell, with only a 3% higher area and a 5% power penalty.

![Figure 4.25: Performance, power, and area comparison of the DICE, 11T and 13T cells](image)

For advanced technologies, the shorter distance between node diffusions results in diffusion of charges to adjacent nodes other than the hit node. The greater the distance is, the lower the possibility of multiple node upsets. Therefore, multiple
node charge collection is a strong function of the cell layout. Layout of DICE cell is shown in Figure 4.19 and proposed 13T cell is shown in Figure 4.26. The minimum distance of critical pair of the DICE cell (x1 to x4) and 13T cell (d to a2) is also shown in Figure 4.19 and Figure 4.26. The area of the 13T cell is 9% higher than the area of DICE cell; however, the distance of the critical pair (d, a2) in 13T cell is 14% longer than the distance of the critical pair (x1, x4) in DICE cell. As the collected charge is a strong function of node distance [4], then charge will diffuse to adjacent nodes when a particle strikes at a critical location, i.e. collection with high (low) charge at the primary node and low (high) charge at secondary node. Therefore, the layout of the proposed 13T memory cell is also consistent with the scenario that charge sharing/collection will result in a substantial difference between values at the primary and secondary nodes. This confirms the advantages of the proposed design over DICE for charge sharing/collection (as already evidenced in the plot of Figure 4.24).

4.9.3 Parameter Variations

In this section, the multiple node upset tolerance of the proposed hardened memory cell is evaluated in the presence of process, voltage, and temperature (PVT) variations.

To model PVT variations by Monte Carlo simulation, parameters including voltage, temperature, and process (threshold voltage and channel length) are swept and simulations are run using a ±5% Gaussian distribution with variation at the ±3-sigma level. Three node charge pairs, marked as A (2.5fC, 0.3fC), B (2.5fC, 0.35fC), C (2.2fC, 0.5fC), are selected for simulation. These three pairs are selected because they are close to the crosspoints of the curves (between parenthesis, the first number
denotes the charge on the primary node, while the second number denotes the charge on the secondary node). The charge injected to the nodes is also modeled using a ±5% Gaussian distribution with variation at the ±3-sigma level. It is expected that at the first two charge pair points (A and B), the 13T memory cell will have a better multiple node upset tolerance, while the DICE cell will have a better multiple node upset tolerance for the third charge pair point (C). The Monte Carlo simulation results are shown in Table 4.4; a sample of 50,000 trials were simulated for each memory cell at the A, B, C charge pairs. The ratio of the number of trials in which the cell does not tolerate the multiple node upset over the total number of trials (i.e. 50,000) is referred to as the failure probability and is reported in Table 4.4. The results of
Table 4.4 confirms the robust multiple node upset tolerance of the hardened cells in the presence of PVT variations, i.e. if in Figure 4.24 the charge pair is located under the curve, then the presence of PVT variations does not affect its hardening capability to tolerate a multiple node upset.

<table>
<thead>
<tr>
<th>Memory Cell</th>
<th>Num of tolerated trials (A: Q1=2.5fC, Q2=0.3fC)</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICE cell</td>
<td>19040/50000</td>
<td>61.92%</td>
</tr>
<tr>
<td>11T cell</td>
<td>39250/50000</td>
<td>88.15%</td>
</tr>
<tr>
<td>13T cell</td>
<td>50000/50000</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Cell</th>
<th>Num of tolerated trials (B: Q1=2.5fC, Q2=0.35fC)</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICE cell</td>
<td>12458/50000</td>
<td>75.08%</td>
</tr>
<tr>
<td>11T cell</td>
<td>66/50000</td>
<td>99.87%</td>
</tr>
<tr>
<td>13T cell</td>
<td>50000/50000</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Cell</th>
<th>Num of tolerated trials (C: Q1=2.2fC, Q2=0.5fC)</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DICE cell</td>
<td>30099/50000</td>
<td>39.80%</td>
</tr>
<tr>
<td>11T cell</td>
<td>0/50000</td>
<td>100%</td>
</tr>
<tr>
<td>13T cell</td>
<td>0/50000</td>
<td>100%</td>
</tr>
</tbody>
</table>

4.10 Conclusion

This chapter has presented a few new designs for a highly stable hardened memory cell in CMOS at 32nm feature size. First, a 14T hardened memory cell has been proposed; the proposed new hardened memory cell relies on connecting a capacitor to the storage node during the standby mode and disconnecting the capacitor during
the write operation. Two additional read access transistors are added to the cell to overcome the stability problem encountered in [68]. As a high stability is achieved by separating read and write operations, the transistors in the proposed hardened memory cell can be resized to optimize power and performance. Simulation results shows that the half pull-down transistor scaling (HP cell) is the best transistor sizing for the proposed hardened memory cell at only a 7% increase in layout area. The impact of process and temperature variations on the critical charge of the proposed hardening cell has been analyzed. It has been shown that the proposed hardened cell is very stable even in the presence of process and temperature variations. Consequently, the proposed hardened memory cell is preferable when designing memories for both high stability and performance.

Previous hardened designs like DICE cell incur in an increase of power consumption and delay; yet another hardened design [47] suffers from two problems that result in failure of its operation. In order to solve those problems in [47], the new configuration has been proposed, analyzed, and simulated using the predictive technology model [52] for soft error hardening at 32nm technology node. The proposed radiation hardened memory cell relies on a novel access mechanism along with two refresh transistors; the proposed cell requires 11 transistors, i.e. one less than the DICE configuration (hence incurring in a smaller overhead in layout and area). Moreover, the proposed cell has been simulated, and assessed for critical charge, power consumption, and delay to overcome the problems encountered in [47]. Using HSPICE, simulation results have confirmed that the proposed memory cell accomplishes the highest soft error tolerance through hardening (it has more than twice the critical charge than the 6T unhardened configuration) and an impressive power-delay product compared
with the other hardened design commonly referred to as DICE.

Finally, this chapter has presented a model, analysis and assessment for hardening a storage element (memory cell and latch) in the presence of a transient fault/soft error resulting in a multiple node upset. The likely scenario of a double node upset has been considered and a new memory cell has been proposed based on a novel methodology. This methodology, whose correctness has been verified in [67] (yielding similar results to 3D device simulation), relies on the so-called critical pair; the critical pair allows establishing the plot of the primary node charge versus the secondary charge such that the area under this curve defines the tolerance to a single event with multiple node upsets for a hardened storage element. The proposed 13T cell utilizes two additional transistors to the 11T design with a Schmitt trigger configuration to increase the critical charge at the secondary node. Tolerance, power consumption, and delay of this 13T design have been compared with existing hardened designs such as DICE. Using HSPICE, simulation results have confirmed that the proposed memory cell accomplishes the best multiple node upset tolerance, and impressive performance (delay and power consumption) compared with previous hardened designs. Under a single event with multiple node upsets, the simulation has established that the 13T cell always outperforms the 11T cell. Compared with DICE, the proposed cell has better tolerance provided that charge sharing is very diffused or limited (as encountered in practical designs [3]). The superiority of the proposed design is also retained under PVT variations.
Chapter 5

Analysis and Design of Soft Error Hardened Latches

5.1 Introduction

Soft errors in memories (both static and dynamic) have traditionally been a much greater concern than soft errors in combinational logic circuits (for the same minimum feature size) since memories contain by far the largest number and density of bits susceptible to particle strikes. In the next decade, technology trends – smaller feature sizes, lower voltage levels, higher operating frequencies, and reduced logic depth – are projected to cause an increase in the soft error failure rate in core combinational logic in integrated circuits. Data latches are used in latch chains and as separate logic gates for data manipulation and storage and must have a good tolerance to soft errors. Many error tolerant methods for soft errors occurring in latches of logic circuits have been proposed. The cost in terms of area, speed, and power for protecting memories and latches from a TF can be significant. Therefore, data integrity against TFs is of the utmost importance for general-purpose applications. For SEs due to TFs affecting a sampling element, hardening has been proposed for low-cost robust design of latches [44].
The objective of this chapter is to propose novel low power and higher soft error tolerant designs for radiation hardening latch circuits in CMOS at the 32nm feature size. By addressing the design issues in the initially proposed in [37] in more detail, this paper presents the analysis of the novel features in detail and compares these designs with existing hardened latch configurations found in the technical literature [44] [63] [26] along with extensive simulations results. Tolerance to soft errors is achieved due to a higher critical charge that is also complemented by higher performance metrics such reduced area overhead. A metric (denoted as QPAR) to assess hardening as well as design figures of merit (such as delay, area, and power) is introduced to compare the proposed latches with existing configurations. Area efficiency of the proposed latches is compared with the conventional hardening latches based on actual layout. Extensive simulation results are used to assess and compare the effectiveness of the new designs. It is shown that the proposed latches offer considerable advantages at the 32nm feature size (using its predictive technology file) based on QPAR. An assessment of the process variation impact is also provided using Monte Carlo simulation. Finally, the multiple node upset scenario and previous analysis are extended to harden latches as type of storage elements.

5.2 Soft Error Modeling

Figure 5.1 shows the soft error occurrence model of [77] used in the latch simulation. In this figure, with no loss of generality and correctness, soft errors (resulting in a signal glitch) occur at the inverter. The model on the left in Figure 5.1 shows the case in which the normal output value for the inverter is high and soft errors occurring at the NMOS transistor generate a negative pulse, whereas the one on the right shows
the case in which the normal output value for the inverter is low and soft errors occurring at the PMOS transistor generate a positive pulse.

![Figure 5.1: Equivalent circuits used for simulation of negative (left) and positive (right) glitches of latches](image)

5.3 Conventional Latch

Figure 5.2 shows a widely used latch circuit, which is referred to as the reference latch in this paper. D denotes the input node, CLK and NCLK are the system clocks, node ln1, l01 and nq are the internal nodes belonging to the latch feedback loop, and Q is the latch output node.

When CLK is high and NCLK is low, the feedback loop is not conductive and the latch is transparent. When CLK is low and NCLK is high, the input is disconnected and the previous data on node nq is retained by the feedback loop made of I1, I3, and T2 as shown in Figure 5.2. As reported in [56], the critical charge, Q_{crit}, is estimated only at specific nodes having a lowest Q_{crit}. Such nodes can be experimentally identified by inspection. Once they are identified, current pulses that model charge
generation are applied to these nodes [77]. Experimental results show that the value of Q_{crit} at node ln1 is the lowest among nodes ln1, nq, and lo1. Furthermore, this is only one tenth of Q_{crit} of the other two nodes.

![Reference (unhardened) latch](image)

Figure 5.2: Reference (unhardened) latch

5.4 Existing Hardened Latches

The addition of gate capacitance to a critical node is one of the common methods to harden CMOS devices. Hardened latch designs based on this approach have been proposed in [44] and [63]. A soft error masking latch using Schmitt trigger circuit (SEM-latch) has been proposed in [63]. Schmitt trigger has a larger hysteresis property in voltage so that it can mask a transient pulse on the input. Meanwhile, it also increases the critical charge of node ln1. As shown in Figure 5.3, transistors M1 and M2 are added to the reference latch to make a Schmitt trigger. When CLK is high and NCLK is low, the operation of the SEM-latch is the same as the reference latch in Figure 5.2. When CLK is low and NCLK is high, transistors M1 and M2 make an inverter in parallel with I1. The equivalent gate capacitance at node ln1 is increased, thus also increasing the critical charge at node ln1.

A split internal node low-cost latch (SIN-LC latch) has been proposed in [44]. As shown in Figure 5.4, rather than adding node capacitance, the SIN-LC latch
Figure 5.3: A Schmitt trigger based hardening latch

utilizes an alternative feedback approach to harden the node. There are two inverter stages from the input of the reference latch to the output in Figure 5.2. Therefore, inverters I1 and I2 are added to the SIN-LC latch of [44] for a fair comparison with the reference latch design. The feedback inverter of the SIN-LC latch is split into two inverters I3 and I4. Nodes int2 and int1 (i.e. the outputs of inverters I3 and I4) are connected to a series of transistors, M1-M3 and M2-M4. When CLK is low and NCLK is high, the split feedback loop can correctly hold the data on node nq by improving the critical charge at node nq. A transient pulse on node int1 or int2 will not change the data as the serially connected transistors are separately driven by int2 and int1. Therefore, TFs on node int2 or int1 will only make the node nq to a high impedance state without changing its logical value. Meanwhile, the critical charges of the nodes int3 and int4 can be increased by sizing up M1 and M4, respectively. For the SIN-LC latch, the node with the lowest critical charge is given by node nq. The increase of the conductance of the transistors M1-M4 can also significantly increase the critical charge of node nq. However, it affects the input-output delay worsening its performance due to the conflicts between the transistors M1-M4 and the latch input driver [44].
A SER-tolerant path-exclusive latch has been proposed in [26] and is shown in Figure 5.5. The SER-tolerant path-exclusive (STPE) latch employs a standard path-exclusive latch and a DICE-like redundant clocked keeper to achieve a high SER-tolerance. As for the STPE latch, an inverter consisting of M23 and M24 must be added to the STPE latch for comparison with the reference latch design, i.e. the inverter is required to generate the signal Q. The operation of the STPE latch is as follows: when CK is low, the latch is transparent. When CK is high, the input is disconnected and the previous data on node nq is retained by the feedback loop. For example, as shown in Figure 5.5, if the data on node ln0a is temporarily changed by a particle strike, ln1a remains unchanged. If there is no redundant circuit, a glitch on ln0a will cause the data on node nq to change. For the STPE latch, contention between two buffers (M7 and M8, M11 and M12) limits the glitch amplitude observed at node nq. However, as shown later in this manuscript, the redundant circuitry incurs in a high area penalty and large power consumption, thus limiting its application in design.
5.5 Proposed Hardened Latches

In this section, three new designs of hardened latches are proposed and analyzed.

5.5.1 Modified SEM-latch

The Schmitt trigger configuration used in the SEM-latch is shown in Figure 5.3. This design can mask a transient pulse on the input node D when CLK is high because the Schmitt trigger can suppress the glitches on the input. When CLK is low, the additional transistors M1 and M2 provide a higher gate capacitance to slightly increase the critical charge on node ln1. However, a TF will still propagate when a larger transient pulse strikes the node ln1 and the positive feedback loop from M1 and M2 (together with inverter I1) amplifies the transient pulse. Thus, a TF causes a SE on the latch. The SEM-latch provides little improvement to the critical charge on node ln1. A modification of the SEM-latch design can, however, provide a significant improvement in critical charge. This new design is shown in Figure 5.6, where the positive feedback transistors M1 and M2 in Figure 5.3 are replaced by inverters I4,
I5 and transistors M1, M2. In the modified soft error masking latch, the feedback scheme is retained and the positive feedback from node ln1 is removed. Therefore, the modified SEM-latch can still suppress the pulses on the input node D and node ln1, while improving the critical charge on node ln1. Simulation results show that the critical charge of the modified SEM-latch is 2.63fC at 32nm CMOS feature size, 0.9V power supply, and room temperature, while the critical charge of the SEM-latch is 2.33fC. Therefore, a 13% critical charge improvement is achieved.

Figure 5.6: Modified soft error masking latch design

5.5.2 Alternative Schmitt Trigger Latch

Similarly to the reference latch in Figure 5.2, the node ln1 of both the SEM-latch and modified SEM-latch is also connected to an inverter. An alternative hardened Schmitt trigger (ST) based latch is proposed in Figure 5.7. In the ST latch, node ln1 is connected to a Schmitt trigger that consists of six transistors [54]. When node ln1 is low, node nq is high, M6 is on, and node int2 is charged. If a TF on a node goes from low to high, to change the state of node nq, the charge at node int2 needs to be discharged first. A similar scenario occurs when there is a negative pulse striking node ln1. Therefore, this Schmitt trigger can provide better tolerance capabilities (robustness) to soft errors due to the charge at nodes int1 and int2. For the latch
operation, when CLK is high and NCLK is low, the feedback loop is not conductive and the latch is transparent. The proposed latch will be slower due to the hysteresis property of the Schmitt trigger. When CLK is low and NCLK is high, the feedback loop (that consists of the Schmitt trigger inverter and a normal inverter I2) retains the data and the Schmitt trigger configuration provides better tolerance capabilities (robustness) to soft errors.

![Figure 5.7: Proposed Schmitt trigger based latch](image)

5.5.3 Cascode Schmitt Trigger Latch

In the ST latch shown in Figure 5.7, the feedback loop consists of an inverter I2 and a clock-controlled transmission gate T2. An alternative configuration of the feedback loop is shown in Figure 5.8, in which both latches work exactly the same using a digital cascade configuration. When the CLK is high and NCLK is low, the latch is transparent, the feedback loop is on and the latch retains the data when the CLK is low and NCLK is high.

However, the feedback configurations in Figure 5.7 and Figure 5.8 are different from the operation of exiting the metastable state at the data-retaining phase. In a hardened latch design, a maximum gain-bandwidth product of the positive feedback
Figure 5.8: Cascode feedback Schmitt trigger (Cascode ST) latch

loop is required to exit the metastable state because the loop has a better immunity to a TF. For the feedback configuration in Figure 5.7, the feedback inverter can be treated as an ordinary common source (CS) amplifier. Therefore, the Miller capacitance is larger, because the output of the feedback inverter is amplified by the small-signal gain of the CS stage (that is usually large) and the phase of the output is inverted from the input. The cascode configuration reduces the Miller effect, because the gain is nearly one. As reported in [33], the cascode configuration provides a better capability to exit the metastable state than the transmission gate configuration due to the reduced Miller effect that will degrade performance when used for a small-signal amplifier. Simulation results show that the ST latch with a cascode feedback (Cascode ST Latch) achieves a critical charge of 3.34fC at 32nm CMOS feature size, 0.9V power supply, and room temperature, compared to 3.00fC of a ST latch with a transmission gate feedback. When CLK is high and NCLK is low, the latches in Figure 5.7 and Figure 5.8 operate similarly, and there is no significant difference between the power and delay performance of the ST latch and the Cascode ST latch. Compared to the ST latch in Figure 5.7, the Cascode ST latch achieves 11% critical charge
improvement with no loss in power and performance. The cascode feedback can also be applied to the Modified SEM-latch and yield a Cascode Modified SEM-latch, as shown in Figure 5.9.

Figure 5.9: Cascode M-SEM latch

5.6 Assessment and Comparison of Hardened Latches

Four hardened latches based on different Schmitt trigger configurations have been discussed in previous sections. Simulations have been performed to investigate the performance and the critical charge of these different hardened latches.

5.6.1 Timing and Delay

Figure 5.10 shows the basic timing diagram of a latch. CLK and NCLK are the system clock, D is the data input and Q is the data output. D_{C-Q} is the propagation delay of the latch from the clock signal CLK to the output Q. D_{D-Q} is the propagation delay of the latch from the data signal D to the output Q. T_{setup} is the minimum time between a change in the data signal and the trailing edge of the clock signal such that the new value of D can propagate to the output Q of the latch and stored in the latch during the non-transparent phase. The performance of the different latches
is compared based on simulations of the switching characteristics of each latch for different values of data setup as proposed in [78], i.e.

\[D = T_{\text{setup}} + D_{C-Q} \]

(5.6.1)

For \(T_{\text{setup}} \) and \(D_{C-Q} \), the max delay between positive and negative transitions (i.e. the larger value between a high to low transition and a low to high transition) is selected as the performance metric for latch. \(T_{\text{setup}} \) and \(D_{C-Q} \) of the latches are listed in Table 5.1.

5.6.2 Area

The layouts of all these latches are shown in the Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16; they are based on MOSIS deep sub-micrometer design rules [66]. The proposed ST latch has only a 10% area increase compared with the reference latch in Figure 5.2, and 4.7% area increase compared with the SEM-latch shown in Figure 5.3. Table 5.2 lists the area of the reference latch, the SEM-latch, the modified SEM-latch, the STPE latch, the ST latch, and
Table 5.1: Critical Charge, Performance, Power Comparison Between Hardened Latches at 0.9V Power Supply and Room Temperature

<table>
<thead>
<tr>
<th>Latches</th>
<th>Q_{crit} (fC)</th>
<th>Power Consumption (nW)</th>
<th>T_{setup} (ps)</th>
<th>$D_{\text{C-Q}}$ (ps)</th>
<th>D (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference latch</td>
<td>1.62</td>
<td>189.0</td>
<td>9</td>
<td>44.48</td>
<td>53.48</td>
</tr>
<tr>
<td>SEM-latch</td>
<td>2.33</td>
<td>206.7</td>
<td>19</td>
<td>49.19</td>
<td>68.19</td>
</tr>
<tr>
<td>STPE latch</td>
<td>5.00</td>
<td>287.6</td>
<td>33</td>
<td>43.80</td>
<td>76.80</td>
</tr>
<tr>
<td>Modified SEM-latch</td>
<td>2.63</td>
<td>217.7</td>
<td>20</td>
<td>50.75</td>
<td>70.75</td>
</tr>
<tr>
<td>ST latch</td>
<td>3.00</td>
<td>212.9</td>
<td>16</td>
<td>54.40</td>
<td>70.40</td>
</tr>
<tr>
<td>Cascode ST latch</td>
<td>3.44</td>
<td>209.6</td>
<td>16</td>
<td>53.90</td>
<td>69.90</td>
</tr>
</tbody>
</table>

The cascode ST latch.

Table 5.2: Area of Latches

<table>
<thead>
<tr>
<th>Latch</th>
<th>reference latch</th>
<th>SEM-latch</th>
<th>Modified SEM-latch</th>
<th>STPE latch</th>
<th>ST latch</th>
<th>Cascode ST latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (μm^2)</td>
<td>1.958</td>
<td>2.284</td>
<td>2.6112</td>
<td>2.828</td>
<td>2.393</td>
<td>2.393</td>
</tr>
</tbody>
</table>

5.6.3 Critical Charge

As mentioned above, the critical charge, Q_{crit}, is estimated only at specific nodes (i.e. those having a low Q_{crit}). A lower Q_{crit} between positive and negative transient pulses is selected as the critical charge of a latch.

Experimental results show that the nodes that have the lowest Q_{crit} in the reference latch, the SEM-latch, the Modified SEM-latch, and the ST latch are the same, i.e.
node ln1 in all circuits has the lowest Q_{crit}. Comparison of these six latches on critical charge, performance, and power consumption is presented in Table 5.1. For fair comparison, the transistor size of all the latches presented in this paper is equivalently sized. All transistor size of SEM-latch and Modified SEM-latch are the same as that of the reference latch. For ST latch and Cascode ST latch, the transmission gate T1 in Figure 5.7 and Figure 5.8 has been increased by 50% to drive two more transistors connected to T1. Simulations have been performed on these four Schmitt trigger based latches at 32nm CMOS feature size, 0.9V power supply, and room temperature. Table 5.1 shows that by utilizing Schmitt trigger configuration, the critical charge of the latch increases 43%, 62%, 85% and 112% for the SEM-latch, the Modified SEM-latch, the ST latch, and the Cascode ST latch, respectively, while the delay and power performance degrade at a smaller penalty. Simulations above are based on using the predictive technology file at 32nm [52]. Simulations based on the netlists extracted from layouts also confirm the critical charge improvement of the latches.
Table 5.1 and Table 5.2 also show that the high critical charge of the STPE latch is accomplished at the expenses of degradations in power, performance (delay), and area (in these Tables, a bold entry identifies the best value of each figure of merit among the hardened latches).

To assess the different hardened latch configurations, a comprehensive metric for performance (as a function of the delay, critical charge, area, and power dissipation) is introduced. Using the simulation results in Table 5.1 and Table 5.2, a comparison can then be quantitatively assessed.
The proposed metric combines the figures of merit in Table 5.1 and Table 5.2: The critical charge should be as high as possible for a highly error-tolerant design. However, for high performance and low power operation, delay, power consumption and setup time should be as small as possible. An increase in critical charge can be achieved by increasing the capacitance of the critical node, but this may require larger transistors, thus increasing power consumption and area. The new metric is given by dividing the critical charge by the product of the power, delay and area, which is referred to as the charge (Q) to PDP-Area Ratio (i.e. QPAR). Therefore,
the QPAR is given as follows:

\[
QPAR = \frac{Critical \ Charge}{Power \times (T_{\text{setup}} + D_{\text{C-Q}}) \times Area}
\]

(5.6.2)

As in Eq. (5.6.2), a high value of QPAR corresponds to a high soft error tolerance, high performance (low delay/compact area) and low power in hardened latches. The QPARs of all the proposed and existing latch configurations are listed in Table 5.3. Table 5.3 shows that the proposed Cascode ST latch has the highest QPAR, which is 36% higher than that of SEM-latch and 22% higher than that of STPE latch.

<table>
<thead>
<tr>
<th>Latch reference latch</th>
<th>SEM-latch</th>
<th>Modified SEM-latch</th>
<th>STPE latch</th>
<th>ST latch</th>
<th>Cascode ST latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPAR</td>
<td>8.2e-5</td>
<td>7.2e-5</td>
<td>8e-5</td>
<td>6.5e-5</td>
<td>9.8e-5</td>
</tr>
</tbody>
</table>
5.6.4 Power-delay Product and Critical Charge

Soft error tolerance must not be achieved at the expense of power dissipation and performance. The power-delay product is a widely used metric for logic circuits. It is also used in this paper to establish the power and performance of the hardened latches. For the reference latch, the SEM-latch, and the ST latch, the critical charge can be increased by increasing the gate capacitance at node ln1. For the SIN-LC latch, the increase in conductance of the transistors M1-M4 can significantly increase the critical charge of node nq. In the Modified SEM-latch, the increase of the source and drain capacitances of the transistors M1 and M2 will increase the critical charge on node ln1. For the STPE latch, the critical charge has the highest value. However, the penalties incurred in delay and area are also very high. All of these techniques result in an increase of both power consumption and propagation delay of the hardened latches, thus degrading the power-delay product as metric for digital CMOS circuits.

Therefore, the relationship between the power-delay product and the critical charge for the different latch circuits is further assessed by not explicitly considering the area (as in the QPAR) as an immediate measure of performance. In this paper, the power-delay product of a latch is defined as follows:

\[
Power - Delay = Static\ Power \times (T_{\text{setup}} + D_{C-Q}) \tag{5.6.3}
\]

While area is not explicitly considered in this section, transistor sizing can have a significant impact on the critical charge of CMOS circuit [14]. So the following changes in transistor sizing of the hardened latches are implemented. In the reference latch and the SEM-latch, the transistors of the inverter I1 are increased. For the Modified SEM-latch in Figure 5.6, the transistor sizes of M1 and M2 are increased. For the ST
latch in Figure 5.7, an increase in sizing of the transistors M1-M4 is required. For the SIN-LC latch, the transistors M1-M4 are also increased to have a higher critical charge value at node \(n_q \). For the STPE latch in Figure 5.5, the transistors M7, M8, M11, and M12 are increased for higher critical charge at node \(n_{ln0a} \). Unfortunately by utilizing an increase in gate sizing, the power-delay product will increase as well. Figure 5.17 shows the relationship between the power-delay product and the critical charge on the reference latch, the SEM-latch, the Modified SEM-latch, the SIN-LC latch, ST latch, Cascode ST latch, and STPE latch. As shown in Figure 5.17, the SEM-latch and the Modified SEM-latch utilize a parallel additional inverter to the existing feedback loop during the non-transparent state, so they have a similar slope in the plot. The ST latch, the Cascode ST latch, STPE latch, and the SIN-LC latch achieve a significantly larger value of critical charge at a lower power-delay product compared to the SEM-latch and the Modified SEM-latch. The STPE latch has the highest critical charge at low values of power-delay product. However, as the transistor sizes increase, the critical charge of the Cascode ST increases faster than that of the STPE latch. As shown in Figure 5.17, the proposed Cascode ST latch has the highest critical charge at higher values of power-delay product. Therefore, this latch should be utilized in these cases for the highest soft error tolerance.

5.6.5 Process Variations

The effect of variations (process, voltage, and temperature) on soft error tolerance is increasing with technology scaling. The soft error tolerance of the latches is also evaluated in the presence of process variations. In this section, Monte Carlo simulation based on 10K samples is used for assessing the latch design under PVT variations. To model PVT variations in the Monte Carlo simulations, parameters including voltage,
temperature, and process (threshold voltage and channel length) are swept and simulations are run using a \(\pm 5\% \) Gaussian distribution with variation at the \(\pm 3\)-sigma level. Table 5.4 shows the failure probability of hardening the original designs (whose QPAR is given in Table 5.3) of the reference latch, the SEM latch, the Modified SEM latch, the ST latch, the SIN-LC latch, the Cascode ST latch, and the STPE latch when a fixed charge of 3fC is applied to the critical node of each latch. The results of Table 5.4 confirm that as the induced charge is constant, then the probability of failure of hardening is smaller when a larger \(Q_{\text{crit}} \) is present in the latch. However, difference in the probability of failure between the Cascode ST and STPE latches is negligible.

5.7 Multiple Node Upset Analysis

In this section, the multiple node upset scenario and previous analysis are extended to harden latches as type of storage elements.
Table 5.4: Critical Charges and Failure Probability of Latches

<table>
<thead>
<tr>
<th>Latch</th>
<th>Critical Charge (fC)</th>
<th>Hardening Failure Prob @ 3fC</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference latch</td>
<td>1.62</td>
<td>100%</td>
</tr>
<tr>
<td>SEM-latch</td>
<td>2.33</td>
<td>100%</td>
</tr>
<tr>
<td>Modified SEM-latch</td>
<td>2.63</td>
<td>97.76%</td>
</tr>
<tr>
<td>ST latch</td>
<td>3.00</td>
<td>43.1%</td>
</tr>
<tr>
<td>SIN-LC Latch</td>
<td>3.22</td>
<td>10.23%</td>
</tr>
<tr>
<td>Cascode ST latch</td>
<td>3.34</td>
<td>0.41%</td>
</tr>
<tr>
<td>STPE latch</td>
<td>5.00</td>
<td>0%</td>
</tr>
</tbody>
</table>

5.7.1 Multiple Node Upset Tolerance

As device scaling reduces the feature size, the multiple node upset is also becoming a concern for latch design. The mode and analysis methodology presented in Chapter 4 for memory cells can also be applied to existing hardened latches to evaluate their multiple node upset tolerance. As hardening is achieved by increasing the capacitance of the critical node of the latch, higher the critical charge is, the better is the multiple node tolerance of the latch. Similar to memory cells, critical pairs are indentified first in the proposed hardening process. The primary nodes are the critical nodes of the hardened latches, and HSPICE simulation has been performed on all single node hardened latches to establish the secondary nodes. Simulation results show that for SEM-latch, Modified SEM-latch, and ST latch, the critical pairs are always the same, i.e. “ln11->0, lo1 1->0”. For the Modified SEM-latch and the ST latch, the transmission gate feedback can be replaced by a cascode feedback, yielding a Cascode Modified SEM-latch shown in Figure 5.9 and a Cascode ST latch shown in Figure 5.8. For the Cascode Modified SEM-latch and the Cascode ST latch, the critical pairs are “ln11->0, n2 1->0”, where node n2 is the internal node in the cascode feedback. Similar to the multiple node upset scenario for memory cells, and after establishing
the critical pairs, the plot of primary node charge versus secondary node charge is found by simulation [67] (Figure 5.18). As for the memory cells, larger the area under the curve better is the tolerance to multiple node upsets. Figure 5.18 shows that the curves intersect the X and Y axes, thus resulting in a single node charge upset (i.e. when the charge deposited on the other node is 0). Table 5.1 shows that the cascode configuration has higher critical charge than the transmission gate configuration for both the M-SEM latch and the ST latch. However as shown in Figure 5.18 the transmission gate configuration has a better tolerance to multiple node upsets (i.e. a larger area under the curve). Take ST latch in Figure 5.7 and Cascode ST latch in Figure 5.8 as an example. For the cascode configuration of Figure 5.8, the voltage on node n2 is lower than V_{dd}, while in the transmission gate configuration of Figure 5.7, the voltage on lo1 is V_{dd}. Moreover, the capacitance on node n2 of Figure 5.8 is smaller than on node lo1 of Figure 5.7 (node n2 only has only two transistors on n2 and node lo1 has four transistors on the node). So, it is easier for the node n2 to change its current state than node lo1. Hence, the transmission gate configuration is preferable because it has better multiple node upset tolerance than the cascode configuration.

5.7.2 Process Variation Impact on Multiple Node Upset Tolerance

The multiple node upset tolerance of the hardened latches is also evaluated in the presence of PVT variations. To model PVT variations by Monte Carlo simulation, the same conditions for the parameters (voltage, temperature, and process) as for the memory cells are used. Two node charge pairs, marked as A (2.5fC, 0.5fC) and B (2.2fC, 1.0fC), are selected for simulation because they are located between
the curves of the ST latches and the SEM latches. As in the simulation of the memories, the amounts of charge injected to the nodes are modeled with a ±5% Gaussian distribution with variation at the ± 3-sigma level. The simulation results in the presence of PVT variations are shown in Table 5.5; the two selected node charge pairs are located under the curve of the Cascode ST latch and the ST latch, and above the curve of the other hardened latches; therefore, the failure probability of the SEM latch, the Modified SEM latch, and the Cascode Modified SEM latch should be significantly higher than the failure probability of the ST latch and the Cascode ST latch. The simulation results reported in Table 5.5 confirm the expected results. Hence, at least in theory, the hardened latches with a high critical charge will have a better multiple node upset tolerance. The presented simulation results have confirmed that the Cascode ST latch and the ST latch a better multiple node upset tolerance than the hardened latches of SEM-latch, the Modified SEM-latch, and the Cascode Modified SEM latch.
Table 5.5: Failure probability of latches with PVT variations

<table>
<thead>
<tr>
<th>Latch</th>
<th>Num of tolerated trials (A: Q1=2.5fC, Q2=0.5fC)</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM latch</td>
<td>501/30000</td>
<td>98.33%</td>
</tr>
<tr>
<td>M-SEM latch</td>
<td>8843/30000</td>
<td>70.52%</td>
</tr>
<tr>
<td>Cascode M-SEM latch</td>
<td>5456/30000</td>
<td>81.81%</td>
</tr>
<tr>
<td>ST latch</td>
<td>28872/30000</td>
<td>3.76%</td>
</tr>
<tr>
<td>Cascode ST latch</td>
<td>28612/30000</td>
<td>4.63%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latch</th>
<th>Num of tolerated trials (B: Q1=2.2fC, Q2=1.0fC)</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM latch</td>
<td>664/30000</td>
<td>97.79%</td>
</tr>
<tr>
<td>M-SEM latch</td>
<td>10032/30000</td>
<td>66.56%</td>
</tr>
<tr>
<td>Cascode M-SEM latch</td>
<td>957/30000</td>
<td>96.81%</td>
</tr>
<tr>
<td>ST latch</td>
<td>29624/30000</td>
<td>1.25%</td>
</tr>
<tr>
<td>Cascode ST latch</td>
<td>18556/30000</td>
<td>38.15%</td>
</tr>
</tbody>
</table>

5.8 Conclusion

This paper has presented new designs for the radiation hardening of latch circuits in nano-CMOS. The single event upset is modeled in HSPICE to determine the soft error tolerance. Novel configurations for latches have been proposed, analyzed, and simulated using the predictive technology file at 32nm [52] for tolerance to soft errors caused by radiation. Three configurations of the hardened latches have been proposed and designed (inclusive of layouts); two of them are based on a Schmitt trigger circuit, while the last one utilizes a cascode configuration. In all cases, simulations have shown that the proposed designs have excellent tolerance to soft errors, low delay, low power dissipation, and high performance. Using QPAR, the proposed designs offers significant advantages over the existing latch configurations of [44] [63] [26],
and provide excellent performance at the reduced feature size of 32nm. The proposed Cascode ST latch has the highest QPAR; Monte Carlo simulation has also been performed under PVT variations. A multiple node upset analysis has also been pursued for hardening latches; it has been shown that the hardened latch with the highest critical charge has also the best tolerance for a multiple node upset.
Chapter 6

Summary and Future Works

6.1 Summary of Contributions

The objective of this work is to propose robust design approaches for storage elements based on both nano-CMOS and CNTFET.

Chapter 2 presents a new 9T cell for low power consumption and high cell stability. An optimal pull-down to access transistor ratio has been found by considering cell stability and performance. Critical charge and the write-trip current are utilized to determine the optimum pull-up to access transistor ratio. Along with transistor sizing/scaling, an innovative bitline balancing scheme has been utilized to reduce the leakage current at memory array-level. Hence in this proposed memory design, the design is addressed at both cell and array levels. Simulation results have shown that the proposed write scheme for the proposed 9T SRAM cell-based array achieves a substantial reduction in power consumption at a typical process corner compared with a conventional 6T SRAM cell based array. HSPICE simulation results confirm that the proposed scheme achieves a 33% power saving compared to the conventional SRAM array based on the 6T cell configuration. The simulation results have also confirmed that the proposed cell is highly stable and resilient to process variations.
In Chapter 3, the use of CNTFETs in 6T SRAM design is investigated. A dual-diameter CNTFET SRAM cell configuration with different threshold voltages is designed, which is made possible by using different diameters for the P-type and N-type CNTs in the cell. The best chirality for the PCNTFETs was selected to achieve high stability, fast write time, and low power consumption. The proposed design shows significant improvements compared to its CMOS counterpart in terms of power consumption (44% less power consumption) and stability (75% higher static noise margin).

A new comprehensive metric for SRAM cells (denoted as SPR) has then been proposed. SPR is a composite performance measure in terms of high stability, low power and low delay. The proposed 9T SRAM cell in Chapter 2 has the best SPR among all cell configurations found in the current literature. Simulation result shows that the proposed 9T cell achieves 2.84 times higher than the conventional 6T cell. The metric SPR has also been applied to the CNTFET SRAM cell and the proposed dual-diameter CNTFET SRAM cell has a 3.82 times higher SPR under write operation than its CMOS counterpart cell. SPR provides a composite and versatile performance measure in terms of stability, power, and delay.

Hardening has been shown to be an effective way of increasing the single event upsets tolerance of memory cells with little impact on circuit density. The effectiveness of the hardened cell is measured by critical charge. In Chapter 4, a 14T hardened memory cell has been proposed. The proposed new hardened memory cell relies on connecting a capacitor to the storage node during the standby mode and disconnecting the capacitor during the write operation. By separating the circuitry for the write and read operations, the static stability of the proposed cell configuration increase
more than 4.4 times compared to the conventional design. Simulation also shows that by appropriately sizing the pull-down transistors, the proposed cell results in a 40% higher critical charge and 13% less delay than the conventional design. Another hardening approach, where the feedback loop of the cell is blocked to keep the transient pulse from propagating along the loop, is also proposed in this chapter. By utilizing novel access and refreshing mechanisms, the data stored in the proposed 11T hardened memory cell does not change even for a transient pulse of more than twice the charge than a conventional memory cell, with a small cost in terms of power delay product.

This dissertation has also presented a model, analysis and assessment for hardening a memory cell in the presence of a transient fault/soft error resulting in a multiple node upset. A 13T hardened memory cell utilizing Schmitt trigger configuration is also proposed to improve multiple node upset tolerance of the hardened memory cell. Using HSPICE, simulation results have confirmed that the proposed memory cell accomplishes the best multiple node upset tolerance, and impressive performance (delay and power consumption) compared with previous hardened designs. Under a single event with a multiple node upset, the simulation has established that the proposed cell outperforms always the 11T cell. Compared with DICE, the proposed 13T cell has better tolerance provided that charge sharing/collection is very diffused or limited. The performance of the proposed design is also retained under PVT variations.

In combinational logic circuits, data latches are susceptible to single event upsets. Therefore, the tolerance of the latch circuit to the soft errors is a strict requirement in nanoscale circuit designs. Three new hardened designs for CMOS latches at 32nm feature size are proposed in Chapter 5; two of these circuits are Schmitt trigger based,
while the third one utilizes a cascode configuration in the feedback loop. The cascode ST latch has 112% higher critical charge than the conventional reference latch with only 10% area increase. A novel design metric (QPAR) for latches is introduced to assess the overall design effectiveness such as area, performance, power, and soft error tolerance. The novel metric (QPAR) shows the proposed cascode ST latch achieves up to 36% improvement in terms of QPAR compared with the existing hardening designs. Finally, multiple node upset analysis has also been pursued for hardening latches; additionally, it has shown that a cascode configuration has a higher critical charge than a transmission gate configuration in both the M-SEM latch and the ST latch. However, the transmission gate configuration has better multiple node upset tolerance than the cascode configuration due to the larger node capacitance and the higher voltage level at the secondary node.

6.2 Future Works

In this section we provide some directions for future research based on the material presented throughout this dissertation.

6.2.1 Single Event Upset Tolerant Latch Design

All latches proposed in Chapter 5 belong to the first category of hardening approaches mentioned in Chapter 4. In this category, hardening is achieved in the design by increasing the capacitance of some nodes, or the strength of the transistors through a novel design. Hardened design in this category is not totally insensitive to TFs. Hardened latch design utilizing DICE configuration has been proposed in [26] and [40], however, these designs require local redundancy therefore result in large area
and high power consumption. The feedback configuration shown in Figure 4.14 can be also used to design a hardened latch, similar to the proposed 11T cell in Chapter 4. By utilizing the feedback configuration shown in Figure 4.14, it is possible to design a low cost single event upset tolerant latch.

6.2.2 CNTFET-based Hardened Design

Carbon nanotubes have attracted widespread attention of electron device and circuit designers as possible channel material for high-performance transistors. Chapter 3 has shown a possible memory cell design with CNTFET and high static stability has been achieved with dual-chirality selection. As carbon nanotubes are also grown on the silicon substrate in the CNTFETs, the cosmic ray neutrons and α-particles may also cause voltage change on the drain and source of the CNTFETs. Therefore, it would be interesting to investigate the soft error mechanisms on CNTFET-based design and propose CNTFET-based hardened storage elements. Moreover, a novel CNT-based device, Complementary Nano Electro-Mechanical Switch (CNEMS) has been proposed in [15] and storage elements designed using CNEMS are immune to soft errors. It would be an interesting topic for robust storage elements design if there is accurate simulation model available.
Bibliography

