TUNNEL DETECTION USING CROSS BOREHOLE RADAR

K. Clay, M. Farid, A. N. Alshawabkeh, and C. M. Rappaport

Contact info: kclay@coe.neu.edu, mfarid@coe.neu.edu, alsha@coe.neu.edu, and rappaport@neu.edu

PROBLEM IDENTIFICATION

Shallow tunnels present both military and homeland security threats. Smuggling with intentions of avoiding border security have tunnels tunnels into transit routes for trafficking weapons, people, drugs and other illegal materials. Shallow tunnel are also used by prisoners to escape prisons. While drug and human trafficking have long been border concerns, the threat of international terrorism has transformed the effort to detect tunnels into a national security priority. Imminent threats include assailants entering military fortifications by burrowing under buildings, detonation of high grade explosives from foundations of high security facilities, and high level prisoners escaping detention centers through tunnels. Realtime monitoring of the ground surrounding prisons across the country is a desired solution to this problem.

OBJECTIVE

Develop and verify an innovative, efficient, practical, reliable and easily deployable technique for real time monitoring of soil structure integrity, and localized detection of shallow tunnels.

SIGNIFICANCE

The threat of assailants accessing vital security locations is becoming a matter of great concern. Although full scale tunnel detection without reconnaissance surveys may be difficult, cross borehole radar may be used for localized monitoring of soil structure integrity and tunnel detection around vulnerable sites.

CHALLENGES

Variation in the soil environment surrounding prisons due to precipitation causes variation in soil properties including dielectric properties, which makes use of radar based geophysical techniques to detect shallow tunnels challenging. Collecting all year round measurement helps to create a database of background information. Besides, different soils demonstrate similar dielectric properties at higher frequencies and high degrees of water saturation, which may help to make tunnel more feasible.

METHODOLOGY

In this study, the feasibility of using cross borehole radar to detect tunnels is experimentally explored in the pilot-scale SoilBED facility. The problem is also theoretically simulated. Cross borehole radar measurements through PVC-cased boreholes is used to monitor localized changes in soil integrity, dielectric properties, transmission and reflection. PVC-cased monopole antennas are installed in the fully saturated sandy soil across a long horizontal PVC-cased tunnel with a diameter of 2", buried between the antenna, to experimentally simulate an infinite tunnel. Multiple-depth transmission and reflection measurements are collected to evaluate the response of background saturated sandy soil with and without the air filled pilot-scale tunnel. Real time monitoring of the flow of water moving through the PVC tunnel to simulate a human body is also being conducted and evaluated.

EXPERIMENTATION AND DATA COLLECTION

The monopole antennas used were adjusted to take multiple depth transmission and reflection measurements from depths of 11 cm to 35 cm at intervals of 2 cm. Both deep and shallow tunnels are experimented and studied.

Magnitude of Scattered Field

The magnitude of scattered field along the depth of receiver (r = 1.2 GHz), for transmitters at depths: 11, 13, 15, 17, 19, and 21 cm

Theory Versus Experiment:

Tunnel detection technique was modeled using Finite Difference Frequency Domain (FDFD) technique. Then, results were compared with the experimental ones to achieve a reliable and realistic forward model for future inversion and image reconstruction.

Magnitude of Scattered Field

The greatest amplitude suppression was attained when the antennas are at a closer depth to the tunnel. The unexpected suppression on magnitude can be due to scattering effect of the tunnel on the field. The greatest amplitude suppression was attained when transmitter and receiver antennas were all at the tunnel depth.

Comparison Between Different Object Locations (blue and black) and no-object case (red)

Comparison Between Intensity of Incident and Total Fields

The greatest phase due to the tunnel, can be directly used for image reconstruction. These phase variations can be converted to travel time and used for travel time tomography.

REFERENCE

This research was supported in part by the Center for Subsurface Sensing and Imaging systems (CenSSIS), under the Engineering Research Centers Program of the National Science Foundation (NSF: Award Number EEC-9986821).

ACKNOWLEDGMENT

This was supported in part by the Center for Subsurface Sensing and Imaging systems (CenSSIS), under the Engineering Research Centers Program of the National Science Foundation (NSF: Award Number EEC-9986821).